首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the bulk thermodynamics and interfacial properties of electrolyte solution mixtures by accounting for electrostatic interaction, ion solvation, and inhomogeneity in the dielectric medium in the mean-field framework. Difference in the solvation energy between the cations and anions is shown to give rise to local charge separation near the interface, and a finite Galvani potential between two coexisting solutions. The ion solvation affects the phase equilibrium of the solvent mixture, depending on the dielectric constants of the solvents, reflecting the competition between the solvation energy and translation entropy of the ions. Miscibility is decreased if both solvents have low dielectric constants and is enhanced if both solvents have high dielectric constant. At the mean-field level, the ion distribution near the interface is determined by two competing effects: accumulation in the electrostatic double layer and depletion in a diffuse interface. The interfacial tension shows a nonmonotonic dependence on the salt concentration: it increases linearly with the salt concentration at higher concentrations and decreases approximately as the square root of the salt concentration for dilute solutions, reaching a minimum near 1 mM. We also find that, for a fixed cation type, the interfacial tension decreases as the size of anion increases. These results offer qualitative explanations within one unified framework for the long-known concentration and ion size effects on the interfacial tension of electrolyte solutions.  相似文献   

2.
Water-soluble cubic structure Ag(2)Se (alpha-Ag(2)Se) nanocrystals smaller than 5 nm can be obtained by cation-exchange reaction at room temperature, using water-dispersed ZnSe nanocrystals as precursors, which is achieved by controlling the injection speed of AgNO(3) solutions via a syringe pump in the presence of the stabilizer of trisodium citrate. Meanwhile, the thermal stability of the product Ag(2)Se nanocrystals is studied. The results show that the mean sizes and shapes of the precursor ZnSe and product Ag(2)Se nanocrystals are similar, and Se anion sublattices between them are topotaxial. In addition, no phase transition is observed for the product Ag(2)Se (cubic structure) nanocrystals below 180 degrees C. The present synthetic method based on cation-exchange reactions can also be applied to the syntheses of PbSe and CuSe nanocrystals.  相似文献   

3.
Cellulose nanocrystals (CNCs) have drawn tremendous attention because of their extraordinary physical and chemical properties as well as renewability and sustainability. In this work, after a range of pretreatments, such as freeze-drying, ball-milling, mercerization, N-methylmorpholine-N-oxide dissolution and ionic liquid dissolution, various CNCs with different crystalline properties and morphologies were obtained by hydrolysis or oxidation. XRD and AFM were used to determine the influences of pretreatments on the crystalline properties and morphologies of CNCs. New methods, i.e., specific pretreatments followed by sulfuric acid hydrolysis or 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation, were developed to obtain sphere-like CNCs. It was found that sphere-like CNCs were more likely to be obtained from cellulose materials possessing high accessibility. Pretreatments produced cellulose with various crystallinities and polymorphs, and therefore changed the yields of CNCs and influenced their morphology. CNCs prepared by TEMPO oxidation generally had smaller size than the corresponding products obtained by sulfuric acid hydrolysis. In addition, for the dissolved/regenerated cellulose, TEMPO oxidation was a better method to yield sphere-like CNCs than sulfuric acid hydrolysis.  相似文献   

4.
The theoretical mean molar electrostriction volume of electrolytic solvents, DeltaVel(solvent), was calculated from their properties: the relative pressure derivatives of the density (the compressibility) and permittivity and their second pressure derivatives. The molar electrostriction caused by ions at infinite dilution was taken as the differences of their standard partial molar volumes in the solution and their intrinsic volumes: DeltaVel(ion) = Vinfinity(ion) - Vin(ion). The ratio ninfinity = DeltaVel(ion)/DeltaVel(solvent) then represents the solvation number of the ion in the solvent at infinite dilution. Similarly, from the molar volume change on ion pair formation, DeltaVip, the ratio Deltanip = DeltaVip/DeltaVel(solvent) represents the number of solvent molecules released thereby. These values were tabulated for those solvents, ions, and ion pairs for which the relevant information could be found, the extension to nonaqueous solvents not having been attempted previously.  相似文献   

5.
6.
The structures and vibrational frequencies of UO2(H2O)4(2+) and UO2(H2O)5(2+) have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO2(H2O)4(2+) + H2O <--> UO2(H2O)5(2+). The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of -1.19 +/- 0.42 kcal/mol (within 1-3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters: UO2(H2O)4(H2O)8(2+), UO2(H2O)4(H2O)10(2+), UO2(H2O)4(H2O)11(2+), UO2(H2O)5(H2O)7(2+), and UO2(H2O)5(H2O)10(2+), were calculated and are in better agreement with experiment as compared to reactions involving only UO2(H2O)4(2+) and UO2(H2O)5(2+). The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range -5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of -1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of Delta G(exchange) from -2.2 to -0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of -410 +/- 5 kcal/mol, consistent with the best experimental value of -421 +/- 15 kcal/mol.  相似文献   

7.
The effect of solvation and confinement on the conformational equilibria and kinetics of n-butane is examined using molecular dynamics simulations of the bulk and confined fluids and compared to appropriately chosen reference states. Clear evidence for a solvent shift of the preferred conformation in bulk n-butane is found. At a temperature of 292 K and a density of 6.05 nm-3 a small solvent shift in favor of gauche is observed (similar to previously reported values), and the shift increases substantially with an increase in density to 8.28 nm-3. The rate of torsional interconversion from the trans to the gauche state, calculated using the relaxation function method, was found to increase with increasing temperature and density. The rate constants kTG and kGT have an Arrhenius temperature dependence yielding activation energies significantly lower than the trans-gauche and gauche-trans barrier heights in the torsional potential for a free molecule, depending on the density. In the confined phase, we considered the same densities as simulated in the bulk phase, and for four different values of the physical pore width (approximately 1.5-4.0 nm). At the high density, we find that the position of the trans-gauche equilibrium is displaced towards excess trans compared with the bulk phase, reflecting the confinement and interactions of the molecules with the pore wall. The isomerization rate is found to decrease with decreasing pore width. Again, we find that the kinetics obeys an Arrhenius rate law and the activation energy for the trans-gauche and gauche-trans interconversions is slightly smaller than that of the bulk fluid at the same density.  相似文献   

8.
9.
Quantum chemical [MP2(FULL)/6-311++G-(d,p)] calculations are done on the binding of hydrated Li(+), Na(+), K(+), Mg(2+), Cu(+), and Zn(2+) metal ions with biologically relevant heteroaromatics such as imidazole and methylimidazole. The computed interaction energies are found to be in good agreement with the available experimental data. The effect of hydration on hydrogen bonding has been studied in detail and it shows that the hydrogen bond strength between H(2)O···H-N(1) substantially increases in the presence of metal ions. The present study quantifies the cooperativity between M···imidazole (M = Li(+), Na(+), K(+), Mg(2+), Cu(+), and Zn(2+)) and N(1)-H···OH(2) interactions. Topological atoms in molecules (AIM) analysis and charge analysis support the variation in hydrogen-bonding strength and the variation in M···imidazole binding strength. Effect of hydration on N(1)-H stretching frequency is studied, and it shows a clear shift in the stretching frequency after sequential hydration of metal ion as well as the N(1) of imidazole. The present study provides a detailed account on the biologically important M-histidine motif interaction with metal ions, where histidine is modeled by imidazole and methylimidazole.  相似文献   

10.
Palladium and platinum nanocrystals are synthesized by the liquid-liquid phase transfer method, which is a suitable way to produce anisotropic metallic nanoparticles and control their shape at the nanoscopic scale. The process leading to shape control is, however, quite complex as all the physical and chemical parameters could play an important role. In this paper, we have demonstrated the primordial role of the dissolved gases (O(2), H(2), N(2)) in the solvent medium on the nanomorphology of platinum and palladium nanocrystals. In particular, it shows the specific role of H(2) in the formation of platinum nanocubes.  相似文献   

11.
A “solvionic” model of a multicomponent electrochemical system (mixed electrolyte) is considered. An ion in the solution is considered as a point charge rigidly fixed inside its solvation shell. The corresponding equations for the diffuse layer on an ideally polarizable electrode are derived, and an effective method of their numerical solution is formulated. The calculations are performed in order to follow the changes in the diffuse layer structure with variations in the electrode charge and electrolyte composition. Far from the zerocharge potential of solution, the dependences of distributions of solution components over the diffuse layer on the electrode charge radically differ from those within the classic Gouy-Chapman theory. Analytical equations (asymptotics at large electrode charges) for concentrations of solvated ions in the plane of their maximum approach and for their “surface excesses” (diffuse adsorption) are determined. Results of numerical calculations for a 0.2 M LiCl + 0.05 M BaCl2 solution are plotted.  相似文献   

12.
SCF MO LCAO has been applied in the MNDO-WS approximation to calculate the spatial and electronic structures for solvates formed by dicyanamide and tricyanomethanide ions with alcohols, water, chloroform, and methylene chloride. The monosolvates formed by those anions are molecular complexes having medium-strength H bonds.Translated from Teoreticheskaya i Ékperimental'naya Khimiya, Vol. 25, No. 1, pp. 92–96, January–February, 1989.  相似文献   

13.
14.
Hu W  Haddad PR  Hasebe K  Tanaka K 《The Analyst》2001,126(5):555-558
An ion chromatographic (IC) method based on the use of titrant (strong acid) as the stationary phase was developed for simultaneous determination of total alkalinity (TA) and monovalent cations. The titrant used in this study was obtained by initially loading lithium dodecylsulfate (Li-DS) onto a reversed-phase material and then conditioning the column with a slightly acidified aqueous LiCl solution (a mixture of 50.0 mM LiCl and 0.1 mM H2SO4). When a small amount of a basic sample was injected onto a column prepared in this way, the basic species (Bn-) reacted predominantly with H+ on the stationary phase and the reaction with the eluent phase was negligible due to the very low concentration of eluent H+ (in the eluent, a molar ratio of [Li+]/[H+] = 250:1 applied). The stationary phase H+ consumed in the acid-base reaction was then re-supplied by H+ from the eluent. By monitoring the conductance of the eluent using conductivity, an induced peak resulting from the basic species was observed. Calibration graphs of peak areas vs. molar concentration of the basic species for OH-, HCO3- and H2PO4- were found to be identical. CO3(2-), HPO4(2-), and B4O7(2-) also gave identical calibration curves but their slope values were twice those for HCO3-. The detection limit for HCO3- was less than 3.2 microM and the calibration curve was linear up to 12.3 mM (injection volume, 100 microL). Seawater was directly analyzed and its total alkalinity was found to be 2.87 mM (RSD 0.53%, n = 5), which was in good agreement with the result of 2.88 mM (RSD 3.2%, n = 5) obtained using auto-potentiometric titration. Na+ and K+ were determined simultaneously and the concentrations were 481.6 and 10.6 mM, respectively.  相似文献   

15.
We show how the shift in the equilibrium constant K PT for formation of a proton-transfer adduct in a non-interactive solvent, upon addition of a second, hydrogen-bonding solvent S reveals the nature of the hydrogen bonding solvation process. Data are analyzed for the pentachlorophenoltriethylamine proton-transfer equilibrium in cyclohexane solvent, under-going solvation by the acidic alcohols, 2,2,2-trichloroethanol and 1,1,1,3,3,3-hexafluoro-2-propanol. K PT vs. [S] data are fitted to a binding isotherm corresponding to two-stage solvation of both the adduct and the free amine. Stoichiometries and binding constants for both primary and secondary solvation of both solvated species are determined as adjustable parameters. Best fits correspond to both the adduct and free amine under-going primary solvation by one alcohol molecule (presumably at the oxygen and nitrogen lone-pairs, respectively) followed by secondary solvation by one to nine additional alcohol molecules, with binding constants ranging from 2100 M–1, for primary solvation of the adduct by hexafluoro-2-propanol, down to 7 M–1, for secondary solvation of the amine by trichloroethanol. We speculate that the secondary solvation numbers represent average sizes of hydrogen-bonded alcohol chains, nucleated by the enhanced basicity of the primary-solvation alcohol.  相似文献   

16.
Two quantum-mechanical models are proposed to described a shift of tautomeric equilibrium as a result of electronic excitation and change of environment. According to the first n PD MEP model which is used to estimate the relative solvation effect on the stability of tautomers in an excited state, the calculation of the interaction energy between a solvent (simulated by a set of n point dipoles, n PD) and an excited solute molecule is based on the molecular electrostatic potential (MEP) of the corresponding excited state. In the second n PDQ model, a solvent represented by a set of n point dipoles and quadrupoles (n PDQ) modifies the solute's hamiltonian via an electrostatic interaction contribution. Comparing the results of the calculation for isolated and solvated tautomers, the n PDQ model is used to estimate the influence of electronic excitation on the change of relative stability of tautomers existing in a solution. An application of both models to 2- and 4-oxopyridine predicts a shift of the tautomeric equilibria in their excited states in accordance with experimental evidence.  相似文献   

17.
18.
The ammonium ion sensor is based on nitrifying bacteria isolated from activated sludge. The sensor comprises a cation-exchange membrane, an alkaline solution layer (pH 10), a gas-permeable membrane, an immobilized microbial membrane, and an oxygen electrode. This novel combination provides accurate amperometric determinations of ammonium ions in aqueous solutions within 7 min in the range 10-4– 4.5 × 10-2 M. Volatile amines or other ions do not interfere. The relative error is within 4% and the sensor can be used continually for more than 10 days.  相似文献   

19.
The cocatalytical effects of water and ethanol on the cationic polymerization of dioxolane and tetrahydrofuran were studied. The ion pair or were used for initiating the polymerization. The dependence of the polymerization rate on the concentration of cocatalyst was examined with various temperatures, concentrations of monomer, solvents (heptane, tetrachloroethane, tetrachloroethane-heptane mixtures, and 1,4-dioxane), and concentrations of initiator. The abscissa of the maximum of the reaction rate in the dependence mentioned above was the criterion for evaluation of the effect of the reaction variables. The changes observed are small; nevertheless, they prove the share of all components of the polymerizing system in establishing solvation equilibria, which determine the number and the reactivity of active centers and, in fact, the reaction rate.  相似文献   

20.
The effect of bulk dielectric solvation on chemical shielding at nitrogen in CH3CN is studied with reaction field theory. A previous work has demonstrated the strong influence on this property from volume polarization, which describes that part of the reaction field arising from solute charge density penetrating outside its cavity. The essentially exact treatment of volume polarization used in that work is computationally demanding, and a more facile method for simulation of the volume polarization has recently been proposed. It is found in the present work that this simulation of the volume polarization yields results in excellent agreement with the essentially exact treatment of the strong volume polarization effects on nitrogen shielding in CH3CN.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号