首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
High resolution S0 --> Sn and T1 --> Tn electronic absorptions and B-type delayed fluorescence of 1,2,7,8-dibenzanthracene in polymethylmethacrylate (PMMA) were experimentally observed by flash and laser flash photolysis technique. Dibenzanthracene molecules were excited in a two-step process. In the first step, an excited singlet is created, which undergoes intersystem crossing to triplet state, then T-T absorption creates an excited triplet dibenzanthracene molecule, which returns to the first excited singlet level by intersystem crossing. The re-created first excited singlet of dibenzanthracene decays back to the ground state by emitting B-type of delayed fluorescence, which was observed at the same emission band of prompt (normal) fluorescence, and R-, E-, P-types of delayed fluorescences. For normal fluorescence, S1 state is decaying to S0 ground state. For E- and P-type of delayed fluorescences, T1 state is decaying to S0 via S1 state, and for B-type of delayed fluorescence, T2 state is decaying to S0 via S1 state.  相似文献   

2.
The three-photon absorption effect (3PA) of two novel symmetrical charge transfer fluorene-based molecules (abbreviated as BASF and BMOSF) has been determined by using a Q-switched Nd:YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 84 × 10−78 and 114 × 10−78 cm6 s2, respectively. The geometries and electronic excitations of these two molecules are systematically studied by PM3 and ZINDO/S methods. The relationships between 3PA cross-sections and intramolecular charge transfer are discussed micromechanically. The experimental and theoretical results have shown that the larger intramolecular charge transfer, which was characterized by the charge density difference between the ground state (S0) and the first excited state (S1), the greater enhancement of the 3PA cross-sections.  相似文献   

3.
A series of azobenzenes was studied using ab initio methods to determine the substituent effects on the isomerization pathways. Energy barriers were determined from three-dimensional potential energy surfaces of the ground and electronically excited states. In the ground state (S(0)), the inversion pathway was found to be preferred. Our results show that electron donating substituents increase the isomerization barrier along the inversion pathway, whereas electron withdrawing substituents decrease it. The inversion pathway of the first excited state (S(1)) showed trans --> cis barriers with no curve crossing between S(0) and S(1). In contrast, a conical intersection was found between the ground and first excited states along the rotation pathway for each of the azobenzenes studied. No barriers were found in this pathway, and we therefore postulate that after n --> pi (S(1) <-- S(0)) excitation, the rotation mechanism dominates. Upon pi --> pi (S(2) <-- S(0)) excitation, there may be sufficient energy to open an additional pathway (concerted-inversion) as proposed by Diau. Our potential energy surface explains the experimentally observed difference in trans-to-cis quantum yields between S(1) and S(2) excitations. The concerted inversion channel is not available to the remaining azobenzenes, and so they must employ the rotation pathway for both n --> pi and pi --> pi excitations.  相似文献   

4.
Dynamics of the excited singlet (both the S2 and S1) states of a ketocyanine dye, namely, 2,5-bis[(2,3-dihydroindolyl)-propylene]-cyclopentanone (KCD), have been investigated in different kinds of media using steady-state absorption and emission as well as femtosecond transient absorption spectroscopic techniques. Steady-state fluorescence measurements, following photoexcitation of KCD to its second excited singlet state, reveal dual fluorescence (emission from both the S2 and S1 states) behavior. Although the intensity of the S2 --> S0 fluorescence is weaker than that of the S1 --> S0 fluorescence in solutions at room temperature (298 K), the former becomes as much as or more intense than the latter in rigid matrixes at 77 K. The lifetime of the S2 state is short and varies between 0.2 and 0.6 ps in different solvents. After its creation, the S2 state undergoes two simultaneous processes, namely, S2 --> S0 fluorescence and S2 --> S1 internal conversion. Time-resolved measurements reveal the presence of an ultrafast component in the decay dynamics of the S1 state. A good correlation between the lifetime of this component and the longitudinal relaxation times (tauL) of the solvents suggests that this component arises due to solvation in polar solvents. More significant evolution of the spectroscopic properties of the S1 state in alcoholic solvents in the ultrafast time domain has been explained by the occurrence of the repositioning of the hydrogen bonds around the carbonyl group in the excited state of KCD. In 2,2,2-trifluoroethanol, a strongly hydrogen bond donating solvent, it has even been possible to establish the existence of two distinct forms of the S1 state, namely, the non-hydrogen-bonded (or free) molecule and the hydrogen-bonded complex.  相似文献   

5.
High resolution S0-->Sn and T1-->Tn electronic absorptions and B-type delayed fluorescence of 1,2,7,8-dibenzanthracene in polymethylmethacrylate (PMMA) were experimentally observed by flash and laser flash photolysis technique. Dibenzanthracene (hereafter DBA) molecules were excited in a two-step process. In the first step, an excited singlet is created, which undergoes intersystem crossing to triplet state, then T-T absorption creates an excited triplet dibenzanthracene molecule, which returns to the first excited singlet level by intersystem crossing. The re-created first excited singlet of dibenzanthracene decays back to the ground state by emitting B-type of delayed fluorescence, which was observed at the same emission band of prompt (normal) fluorescence, and R-, E-, P-types of delayed fluorescences. For normal fluorescence, S1 state is decaying to S0 ground state. For E- and P-type of delayed fluorescences, T1 state is decaying to S0 via S1 state, and for B-type of delayed fluorescence, T2 state is decaying to S0 via S1 state. The spectrum image showing the absorption/emission bands mentioned was also examined by image processing techniques in order to improve the visual experience of each band by localizing to a specific region of interest (ROI). Experimental results illustrate how the exact location of emission/absorption bands was clearly extracted from the spectral image and further improvements in the visual detection of absorption/emission bands.  相似文献   

6.
The S2 potential energy surface for Cl2CS dissociation has been characterized with a combined complete active space self-consistent field and multireference configuration interaction method. The S3/S2 minimum-energy intersection has been determined with the state-averaged complete active space self-consistent field method. The S2 direct dissociation was found to have a barrier of 6.0 kcal/mol, leading to formation of Cl(X2P)+ClCS(A2A") in the excited electronic state. Dynamics of the S2 state of Cl2CS can be summarized as follows: (1) The S2-S0 fluorescence occurs with high quantum yield at low excess energies; (2) Both the S(2) dissociation and the S2-->S3 internal conversion cause the loss of the S2-S0 fluorescence upon photoexcitation at 235-253 nm; (3) The S2-->S3 internal conversion (IC) followed by the direct IC to the ground electronic state results in the fragments produced in the ground state, while the S2 dissociation leads to formation of the fragments in excited electronic states.  相似文献   

7.
采用含时量子波包理论的简单模型对5-氯尿嘧啶和尿嘧啶的共振拉曼光谱开展了强度分析拟合, 获得了1(π, π*)激发态的几何结构变化动态特征. 结果表明, 尿嘧啶1S0→1S2跃迁的动态结构特征因5-位氯原子取代而改变. 5-氯尿嘧啶的动态结构特征主要沿C5=C6伸缩振动+C6H12 弯曲振动和N3H9/N1H7弯曲振动+N1C6伸缩振动反应坐标展开, 而尿嘧啶的动态结构特征主要沿嘧啶环的伸缩振动+C5H11/C6H12/N1H7弯曲振动和C4=O10伸缩振动反应坐标展开. π和π*轨道中氯原子的pz电子参与嘧啶环的p-π共轭作用导致了在1(π, π*)激发态上5-氯尿嘧啶的振动重组能更多地配分给嘧啶环的弯曲振动模式和C5=C6伸缩振动模式. 尿嘧啶在甲醇中的激发态动态结构特征与在水中的基本一致, 但波包沿C5H11/C6H12/N1H7弯曲振动+N1C6伸缩振动(υ12)和环呼吸振动(υ17)反应坐标的运动明显增强.  相似文献   

8.
The temporally overlapping, ultrafast electronic and vibrational dynamics of a model five-coordinate, high-spin heme in a nominally isotropic solvent environment has been studied for the first time with three complementary ultrafast techniques: transient absorption, time-resolved resonance Raman Stokes, and time-resolved resonance Raman anti-Stokes spectroscopies. Vibrational dynamics associated with an evolving ground-state species dominate the observations. Excitation into the blue side of the Soret band led to very rapid S2 --> S1 decay (sub-100 fs), followed by somewhat slower (800 fs) S1 --> S0 nonradiative decay. The initial vibrationally excited, non-Boltzmann S0 state was modeled as shifted to lower energy by 300 cm(-1) and broadened by 20%. On a approximately 10 ps time scale, the S0 state evolved into its room-temperature, thermal distribution S0 profile largely through VER. Anti-Stokes signals disappear very rapidly, indicating that the vibrational energy redistributes internally in about 1-3 ps from the initial accepting modes associated with S1 --> S0 internal conversion to the rest of the macrocycle. Comparisons of anti-Stokes mode intensities and lifetimes from TRARRS studies in which the initial excited state was prepared by ligand photolysis [Mizutani, T.; Kitagawa, T. Science 1997, 278, 443, and Chem. Rec. 2001, 1, 258] suggest that, while transient absorption studies appear to be relatively insensitive to initial preparation of the electronic excited state, the subsequent vibrational dynamics are not. Direct, time-resolved evaluation of vibrational lifetimes provides insight into fast internal conversion in hemes and the pathways of subsequent vibrational energy flow in the ground state. The overall similarity of the model heme electronic dynamics to those of biological systems may be a sign that the protein's influence upon the dynamics of the heme active site is rather subtle.  相似文献   

9.
We present results from transient absorption spectroscopy on a series of artificial light-harvesting dyads made up of a zinc phthalocyanine (Pc) covalently linked to carotenoids with 9, 10, or 11 conjugated carbon-carbon double bonds, referred to as dyads 1, 2, and 3, respectively. We assessed the energy transfer and excited-state deactivation pathways following excitation of the strongly allowed carotenoid S2 state as a function of the conjugation length. The S2 state rapidly relaxes to the S* and S1 states. In all systems we detected a new pathway of energy deactivation within the carotenoid manifold in which the S* state acts as an intermediate state in the S2-->S1 internal conversion pathway on a sub-picosecond time scale. In dyad 3, a novel type of collective carotenoid-Pc electronic state is observed that may correspond to a carotenoid excited state(s)-Pc Q exciplex. The exciplex is only observed upon direct carotenoid excitation and is nonfluorescent. In dyad 1, two carotenoid singlet excited states, S2 and S1, contribute to singlet-singlet energy transfer to Pc, making the process very efficient (>90%) while for dyads 2 and 3 the S1 energy transfer channel is precluded and only S2 is capable of transferring energy to Pc. In the latter two systems, the lifetime of the first singlet excited state of Pc is dramatically shortened compared to the 9 double-bond dyad and model Pc, indicating that the carotenoid acts as a strong quencher of the phthalocyanine excited-state energy.  相似文献   

10.
11.
Photodissociation mechanisms of nitrosamine (NH2NO) have been studied at the complete active space self-consistent field level of theory in conjunction with atomic-natural-orbital-type basis sets. In addition, the energies of all the critical points and the potential energy curves connecting them have been recomputed with the multiconfigurational second-order perturbation method. Ground state minimum of nitrosamine has a C1 nonplanar structure with the hydrogen atoms of the amino moiety out of the plane defined by the N-N-O bonds. Electronic transitions to the three lowest states are allowed by selection rules: (i) S0-->S3 (7.41 eV) has an oscillator strength of f=0.0006 and it is assigned as an (npO)0-->(piNO*)2 transition, (ii) S0-->S2 (5.86 eV) has an oscillator strength of f=0.14 and it is assigned as an npN-->piNO* transition, and (iii) S0-->S1 (2.98 eV) has an oscillator strength of f=0.002 and it is assigned as an npO-->piNO* transition. It is found that N-N bond cleavage is the most likely process in all the photochemical relevant states, namely, S1 (1 1A"), S2 (2 1A'), and T1 (1 3A"). While S1 and T1 yield exclusively homolytic dissociation: NH2NO-->NH2 (1 2B1)+NO(X 2Pi), on S2 the latter process constitutes the major path, but two additional minor channels are also available: adiabatic homolytic dissociation: NH2NO-->NH2 (1 2A1)+NO(X 2Pi), and adiabatic oxygen extrusion: NH2NO-->NH2N (1 3A1)+O(3P). The excited species NH2 (1 2A1) experiences a subsequent ultrafast decay to the ground state, the final products in all cases the fragments being in their lowest electronic state. We have not found a unimolecular mechanism connecting excited states with the ground state. In addition, homolytic dissociation in the ground state, tautomerizations to NHNOH and NHNHO, and intersystem crossings to T1 are considered. The most favorable process on this state is the isomerization to NHNOH.  相似文献   

12.
The ground state (S(0)) and the lowest singlet excited state (S(1)) of a newly synthesized red fluorescent material, 2-[3-(2-{4-[(2-Hydroxy-ethyl)-methyl-amino]-phenyl}-vinyl)-5,5-dimethyl-cyclohex-2-enylidene]-malononitrile (A31), are investigated. The S(0) and S(1) geometries are optimized at the ab initio Hartree-Fock and the singles configuration interaction (CIS) levels of theory, respectively. The CIS and semiempirical Zerner's Intermediate Neglect of Differential Overlap (ZINDO) methods provide the results for the absorption (S(0)-->S(1)) and emission (S(1)-->S(0)) transition energies. The Stokes shifts calculated at the CIS and ZINDO levels of theory are obtained. The absorption spectra in various solvents are calculated using the time-dependent density-functional theory method in combination with the polarized continuum model, which are in very good agreement with our experimental measurements. The solvent effects are discussed.  相似文献   

13.
By means of steady-state fluorescence spectroscopy we explore the photophysics of two lowest lying singlet excited states in two natural 15-cis-carotenoids, namely phytoene and phytofluene, possessing three and five conjugated double bonds (N), respectively. The results are interpreted in relation to the photophysics of all-transcarotenoids with varying N. The fluorescence of phytofluene is more Stokes-shifted relative to that of phytoene, and is ascribed to the forbidden S1-->S0 transition, with its first excited singlet state (S1) lying 3340 cm-1 below the dipole allowed second excited singlet state (S2), at 77 K. For phytoene the S2 and S1 potential surfaces are closer in energy, probably giving rise to the mixed S2 and S1 fluorescence characteristics. The origin of phytoene fluorescence is discussed and is suggested to be due to the S1-->S0 transition; with the S1 state located 1100 cm-1 below S2 at 77 K. The dependence of the fluorescence quantum yield on temperature and viscosity shows that large amplitude molecular motions are involved in the radiationless relaxation process of phytoene. The transition dipole moment of absorption and emission are parallel in phytoene and nonparallel in phytofluene.  相似文献   

14.
Photodissociation spectra of Mg+-XCH3 (X=F, Cl, Br, and I) complexes have been measured in the ultraviolet region (225-415 nm). Several fragment ions with and without charge transfer (CT), Mg+, XCH3+, MgX+, MgCH3+, CH3+, and X+, were formed by evaporation (intermolecular bond dissociation) and intracluster reaction (intramolecular bond dissociation) via excited electronic states. Branching ratios of these ions were found to depend both on absorption bands and on halogen atoms. The ground states of the complexes were calculated to have geometries in which the Mg atom lies next to X atom of methyl halide molecules. Positive charges of the complexes are confirmed to be almost localized on Mg. Observed absorption bands were assigned to the transitions of the Mg+2P-2S atomic line perturbed by interactions with methyl halide molecules. Branching ratios of fragment ions can be partly explained by the stability of fragment ions and neutral counterparts. From the excited state potential energy curves along the Mg-X bond distance, dissociation reaction after CT was concluded to proceed predissociatively; potential curve crossings between the initially excited states and repulsive CT states may have a crucial role in the formation of CH3+, XCH3+, and X+. In particular, XCH3+ ions were formed via repulsive CT states having a character of electron excitation from Xnp to Mg+3s.  相似文献   

15.
The ultrafast internal conversion (IC) dynamics of the carbonyl carotenoid 12'-apo-beta-caroten-12'-al has been investigated in solvents of varying polarity using time-resolved femtosecond transient absorption spectroscopy. The molecules were excited to the S(2) state by a pump beam of either 390 or 470 nm. The subsequent intramolecular dynamics were detected at several probe wavelengths covering the S(0)--> S(2) and S(1)--> S(n) bands. For the S(1)--> S(0) internal conversion process, a remarkably strong acceleration with increasing polarity was found, e.g., lifetimes of tau(1) = 220 ps (n-hexane), 91 ps (tetrahydrofuran) and 8.0 ps (methanol) after excitation at 390 nm. The observation can be rationalized by the formation of a combined S(1)/ICT (intramolecular charge transfer) state in the more polar solvents. The effect is even stronger than the strongest one reported so far in the literature for peridinin. Addition of lithium salts to a solution of 12'-apo-beta-caroten-12'-al in ethanol leads only to small changes of the IC time constant tau(1). In addition, we estimate an upper limit for the time constant tau(2) of the S(2)--> S(1) internal conversion process of 300 fs in all solvents.  相似文献   

16.
Highly correlated coupled cluster methods with single and double excitations (CSSD) and CCSD with perturbative triple excitations were used to predict molecular structures and harmonic vibrational frequencies for the electronic ground state X 1Sigma+, and for the 3Delta, 3Sigma+, 3Phi, 1 3Pi, 2 3Pi, 1Sigma+, 1Delta, and 1Pi excited states of NiCO. The X 1Sigma+ ground state's geometry is for the first time compared with the recently determined experimental structure. The adiabatic excitation energies, vertical excitation energies, and dissociation energies of these excited states are predicted. The importance of pi and sigma bonding for the Ni-C bond is discussed based on the structures of excited states.  相似文献   

17.
Excited-state dynamics of [Re(MQ+)(CO)3(dmb)]2+, (dmb = 4,4'-dimethyl-2,2'-bipyridine, MQ+ = N-methyl-4,4'-bipyridinium) was studied by femtosecond time-resolved spectroscopy in the visible spectral region. Excitation at 400 or 330 nm prepares a mixture of Re --> dmb and Re --> MQ+ metal-to-ligand charge-transfer, MLCT, states. The Re --> dmb MLCT state undergoes a dmb*- --> MQ+ interligand electron transfer to produce a relatively long-lived Re --> MQ+ MLCT excited state, which was characterized spectroscopically. The lifetime of this reaction was determined as 8.3 ps in CH3CN. The interligand electron transfer occurs as a nonadiabatic process in the Marcus normal region. The electronic coupling was estimated to lie in the range 20-40 cm(-1). The electron transfer becomes partially adiabatic in ethylene glycol solutions for which the reaction lifetime of 14.0 ps was determined. Depending on the medium relaxation time, the principal control of the electron-transfer rate changes from electron tunneling to solvent relaxation.  相似文献   

18.
The electronic and geometric structures of gallium dinitride cation, GaN2+ and gallium tetranitride cation, GaN4+ were systematically studied by employing density functional theory (DFT-B3LYP) and perturbation theory (MP2, MP4) in conjunction with large basis sets, (aug-)cc-pVxZ, x = T, Q. A total of 7 structures for GaN2+ and 24 for GaN4+ were identified, corresponding to minima, transition states, and saddle points. We report geometries and dissociation energies for all the above structures as well as potential energy profiles, potential energy surfaces, and bonding mechanisms for some low-lying electronic states. The calculated dissociation energy (De) of the ground state of GaN2+, X1Sigma+, is 5.6 kcal/mol with respect to Ga+(1S) + N2(X1Sigmag+) and that of the excited state, ?3Pi, is 24.8 kcal/mol with respect to Ga+(3P) + N2(X1Sigmag+). The ground state and the first excited minimum of GaN4+ are of 1A1(C2v) and 3B1(C2v) symmetry with corresponding De of 11.0 and 43.7 kcal/mol with respect to Ga+(1S) + 2N2(X1Sigmag+) for X1A1 and Ga+(3P) + 2N2(X1Sigmag+) for 3B1.  相似文献   

19.
The photophysical properties of tetra-(tert-butyl)-phthalocyanato-magnesium (t4-PcMg) in solution and microheterogeneous systems (liposomes and micelles) were investigated. Radical cation formation occurs in chloroform during UV excitation in the presence of an electron acceptor (CBr4). The same result is achieved by two-step absorption in the singlet manifold using pulsed excitation at λexc=670 nm, which is of interest from the viewpoint of photon delivery through the therapeutic window of tissues. To obtain a deeper insight into the photophysics leading to radical cation formation via the higher excited singlet state, the transient spectra and singlet—singlet absorption cross-sections were determined. In addition to strong excited state absorption within the spectral range of the Qx-band, relatively large absorption cross-sections were also found in regions with low ground state absorption. The importance of these transitions for an effective two-colour excitation regime is discussed with regard to new start mechanisms for photodynamic laser tumour theraphy.  相似文献   

20.
The relevant excited states involved in the photolysis of methylcobalamin (MeCbl) have been examined by means of time-dependent density functional theory (TD-DFT). The low-lying singlet and triplet excited states have been calculated along the Co-C bond at the TD-DFT/BP86/6-31g(d) level of theory in order to investigate the dissociation process of MeCbl. These calculations have shown that the photodissociation is mediated by the repulsive 3(sigmaCo-C --> sigma*Co-C) triplet state. The key metastable photoproduct involved in Co-C bond photolysis was identified as an S1 state having predominantly dCo --> pi*corrin metal-ligand charge transfer (MLCT) character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号