首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The experimental techniques of H (Rydberg) atom photofragment translational spectroscopy and resonance-enhanced multiphoton ionisation time-of-flight spectroscopy have been used to investigate the dynamics of H atom loss processes from gas phase 4-fluorophenol (4-FPhOH), 4-chlorophenol (4-ClPhOH) and 4-bromophenol (4-BrPhOH) molecules, following excitation at many wavelengths, lambda(phot), in the range between their respective S(1)-S(0) origins (284.768 nm, 287.265 nm and 287.409 nm) and 216 nm. Many of the Total Kinetic Energy Release (TKER) spectra obtained from photolysis of 4-FPhOH show structure, the analysis of which reveals striking parallels with that reported previously for photolysis of bare phenol (M. G. D. Nix, A. L. Devine, B. Cronin, R. N. Dixon and M. N. R. Ashfold, J. Chem. Phys., 2006, 125, 133318). The data demonstrates the importance of O-H bond fission, and that the resulting 4-FPhO co-fragments are formed in a select fraction of their available vibrational state density. All spectra recorded at lambda(phot)> or = 238 nm show a feature centred at TKER approximately 5500 cm(-1). These H atom fragments show no recoil anisotropy, and are rationalised in terms of initial S(1)<-- S(0) (pi* <--pi) excitation and subsequent dissociation via two successive radiationless transitions: internal conversion to ground (S(0)) state levels carrying sufficient O-H stretch vibrational energy to allow efficient transfer to (and round) the Conical Intersection (CI) between the S(0) and S(2)((1)pi sigma*) Potential Energy Surfaces (PESs) at larger R(O-H), en route to H atoms and ground state 4-FPhO products. The vibrational energy disposal in the 4-FPhO products indicates that parent mode nu(16a) promotes non-adiabatic coupling at the S(0)/S(2) CI. Spectra recorded at lambda(phot)< or = 238 nm reveal a faster (but still isotropic) distribution of recoiling H atoms, centred at TKER approximately 12 000 cm(-1), attributable to H + 4-FPhO products formed when the optically excited (1)pi pi* molecules couple directly with the (1)pi sigma* PES. Parent mode nu(16b) is identified as the dominant coupling mode at the S(1)((1)pi pi*)/S(2)((1)pi sigma*) CI, and the resulting 4-FPhO radical co-fragments display progressions in nu(18b) (the C-O in-plane wagging mode) and nu(7a) (an in-plane ring breathing mode involving significant C-O stretching motion). Analysis of all structured TKER spectra yields a C-F bond dissociation energy: D(0)(H-OC(6)H(4)F) = 29 370 +/- 50 cm(-1). The photodissociation of 4-ClPhOH shows many similarities, though the 4-ClPhO products formed together with faster H atoms at shorter wavelengths (lambda(phot)< or = 238 nm, by coupling through the S(1)/S(2) CI) show activity in an alternative ring breathing mode (nu(19a) rather than nu(7a)). Spectral analysis yields D(0)(H-OC(6)H(4)Cl) = 29 520 +/- 50 cm(-1). H atom formation via O-H bond fission is (at best) a very minor channel in the photolysis of 4-BrPhOH at all wavelengths investigated. Time-dependent density functional theory calculations suggest that this low H atom yield is because of competition from the alternative C-Br bond fission channel, and that the analogous C-Cl bond fission may be responsible for the weakness of the one photon-induced H atom signals observed when photolysing 4-ClPhOH at longer wavelengths.  相似文献   

2.
The fragmentation dynamics of gas phase phenol molecules following excitation at many wavelengths in the range 279.145 > or = lambdaphot > or = 206.00 nm have been investigated by H Rydberg atom photofragment translational spectroscopy. Many of the total kinetic energy release (TKER) spectra so derived show structure, the analysis of which confirms the importance of O-H bond fission and reveals that the resulting phenoxyl cofragments are formed in a very limited subset of their available vibrational state density. Spectra recorded at lambdaphot > or = 248 nm show a feature centered at TKER approximately 6500 cm(-1). These H atom fragments, which show no recoil anisotropy, are rationalized in terms of initial S1<--S0 (pi*<--pi) excitation, and subsequent dissociation via two successive radiationless transitions: internal conversion to ground (S0) state levels carrying sufficient O-H stretch vibrational energy to allow efficient transfer towards, and passage around, the conical intersection (CI) between the S0 and S2(1pisigma*) potential energy surfaces (PESs) at larger R(O-H), en route to ground state phenoxyl products. The observed phenoxyl product vibrations indicate that parent modes nu16a and nu11 can both promote nonadiabatic coupling in the vicinity of the S0S2 CI. Spectra recorded at lambdaphot < or = 248 nm reveal a faster, anisotropic distribution of recoiling H atoms, centered at TKER approximately 12,000 cm(-1). These we attribute to H+phenoxyl products formed by direct coupling between the optically excited S1(1pi pi*) and repulsive S2(1pi sigma*) PESs. Parent mode nu16b is identified as the dominant coupling mode at the S1/S2 CI, and the resulting phenoxyl radical cofragments display a long progression in nu18b, the C-O in-plane wagging mode. Analysis of all structured TKER spectra yields D0(H-OC6H5) = 30,015 +/- 40 cm(-1). The present findings serve to emphasize two points of wider relevance in contemporary organic photochemistry: (i) The importance of 1) pi sigma* states in the fragmentation of gas phase heteroaromatic hydride molecules, even in cases where the 1pi sigma* state is optically dark. (ii) The probability of observing strikingly mode-specific product formation, even in "indirect" predissociations, if the fragmentation is driven by ultrafast nonadiabatic couplings via CIs between excited (and ground) state PESs.  相似文献   

3.
The photoinduced hydrogen (or deuterium) detachment reaction of thiophenol (C(6)H(5)SH) or thiophenol-d(1) (C(6)H(5)SD) pumped at 243 nm has been investigated using the H (D) ion velocity map imaging technique. Photodissociation products, corresponding to the two distinct and anisotropic rings observed in the H (or D) ion images, are identified as the two lowest electronic states of phenylthiyl radical (C(6)H(5)S). Ab initio calculations show that the singly occupied molecular orbital of the phenylthiyl radical is localized on the sulfur atom and it is oriented either perpendicular or parallel to the molecular plane for the ground (B(1)) and the first excited state (B(2)) species, respectively. The experimental energy separation between these two states is 2600+/-200 cm(-1) in excellent agreement with the authors' theoretical prediction of 2674 cm(-1) at the CASPT2 level. The experimental anisotropy parameter (beta) of -1.0+/-0.05 at the large translational energy of D from the C(6)H(5)SD dissociation indicates that the transition dipole moment associated with this optical transition at 243 nm is perpendicular to the dissociating S-D bond, which in turn suggests an ultrafast D+C(6)H(5)S(B(1)) dissociation channel on a repulsive potential energy surface. The reduced anisotropy parameter of -0.76+/-0.04 observed at the smaller translational energy of D suggests that the D+C(6)H(5)S(B(2)) channel may proceed on adiabatic reaction paths resulting from the coupling of the initially excited state to other low-lying electronic states encountered along the reaction coordinate. Detailed high level ab initio calculations adopting multireference wave functions reveal that the C(6)H(5)S(B(1)) channel may be directly accessed via a (1)(n(pi),sigma(*)) photoexcitation at 243 nm while the key feature of the photodissociation dynamics of the C(6)H(5)S(B(2)) channel is the involvement of the (3)(n(pi),pi(*))-->(3)(n(sigma),sigma(*)) profile as well as the spin-orbit induced avoided crossing between the ground and the (3)(n(pi),sigma(*)) state. The S-D bond dissociation energy of thiophenol-d(1) is accurately estimated to be D(0)=79.6+/-0.3 kcalmol. The S-H bond dissociation energy is also estimated to give D(0)=76.8+/-0.3 kcalmol, which is smaller than previously reported ones by at least 2 kcalmol. The C-H bond of the benzene moiety is found to give rise to the H fragment. Ring opening reactions induced by the pi-pi(*)n(pi)-pi(*) transitions followed by internal conversion may be responsible for the isotropic broad translational energy distribution of fragments.  相似文献   

4.
Vibronic optical emissions from CS(A1pi --> X1sigma+) and CS(a3pi --> X1sigma+) transitions have been identified from dissociative recombination (DR) of CS2(+) and HCS2(+) plasmas. All of the spectra were taken in flowing afterglow plasmas using an optical monochromator in the UV-visible wavelength region of 180-800 nm. For the CS(A --> X) and CS(a --> X) emissions, the relative vibrational distributions have been calculated for v' < 5 and v' < 3 in both types of plasmas for the CS(A) and CS(a) states, respectively. Both recombining plasmas show a population inversion from the v' = 0 to v' = 1 level of the CS(A) state, similar to other observations of the CS(A) state populations, which were generated using two other energetic processes. The possibility of spectroscopic cascading is addressed, such that transitions from upper level electronic states into the CS(A) and CS(a) states would affect the relative vibrational distribution, and there is no spectroscopic evidence supporting the cascading effect. Additionally, excited-state transitions from neutral sulfur (S(5S(2)0 --> 3P(2)) and S(5S(2)0 --> 3P(1))) and the products of ion-molecule reactions (CS(B1sigma+ --> A1pi), CS(+)(B2sigma+ --> A2pi(i)), and CS2(+) (A2pi(u) --> X2pi(g))) have been observed and are discussed.  相似文献   

5.
Femtosecond dynamics of riboflavin, the parent chromophore of biological blue-light receptors, was measured by broadband transient absorption and stationary optical spectroscopy in polar solution. Rich photochemistry is behind the small spectral changes observed: (i) loss of oscillator strength around time zero, (ii) sub-picosecond (ps) spectral relaxation of stimulated emission (SE), and (iii) coherent vibrational motion along a' (in-) and a' (out-of-plane) modes. Loss of oscillator strength is deduced from the differences in the time-zero spectra obtained in water and DMSO, with stationary spectroscopy and fluorescence decay measurements providing additional support. The spectral difference develops faster than the time resolution (20 fs) and is explained by formation of a superposition state between the optically active (1pi pi*) S1 and closely lying dark (1n pi*) states via vibronic coupling. Subsequent spectral relaxation involves decay of weak SE in the blue, 490 nm, together with rise and red shift of SE at 550 nm. The process is controlled by solvation (characteristic times 0.6 and 0.8 ps in water and DMSO, respectively). Coherent oscillations for a' and a' modes show up in different regions of the SE band. a' modes emerge in the blue edge of the SE and dephase faster than solvation. In turn, a' oscillations are found in the SE maximum and dephase on the solvation timescale. The spectral distribution of coherent oscillations according to mode symmetry is used to assign the blue edge of the SE band to a 1n pi*-like state (A'), whereas the optically active 1pi pi* (A') state emits around the SE maximum. The following model comes out: optical excitation occurs to the Franck-Condon pi pi* state, a pi pi*-n pi* superposition state is formed on an ultrafast timescale, vibrational coherence is transferred from a' to a' modes by pi pi*-n pi* vibronic coupling, and subsequent solvation dynamics alters the pi pi*/n pi* population ratio.  相似文献   

6.
The fragmentation dynamics of imidazole molecules following excitation at 193.3 nm and at many wavelengths in the range of 210< or =lambda(phot)< or =240 nm have been investigated by H Rydberg atom photofragment translational spectroscopy. Long wavelength excitation within this range results in population of the 1 (1)A(")((1)pisigma(*)) excited state, but the 2 (1)A(')<--X (1)A(')(pi(*)<--pi) transition becomes the dominant absorption once lambda(phot)< or =220 nm. The measured energy disposals show parallels with those found in recent studies of the UV photolysis of pyrrole [Cronin et al., Phys Chem. Chem. Phys. 6, 5031 (2004)]. The total kinetic energy release (TKER) spectra display a "fast" feature, centred at TKER approximately 9200 cm(-1). The analysis of the structure evident in the fast feature reveals the selective population of specific in-plane stretching vibrational levels of the imidazolyl cofragment; these fragments are deduced to carry only modest amounts of rotational excitation. Comparison with calculated normal mode vibrational frequencies allows the assignment of the populated levels and a precise determination of the N-H bond strength in imidazole: D(0)=33,240+/-40 cm(-1). The observed energy disposal can be rationalized using Franck-Condon arguments, assuming that the potential energy surface (PES) for the 1 (1)A(")((1)pisigma(*)) state has a topology similar to that of the corresponding (1)pisigma(*) state of pyrrole. As in pyrrole, photoexcitation populates skeletal motions in the S(1) state (in-plane motions in the present case) that are only weakly coupled to the N-H dissociation coordinate and thus map through into the corresponding product vibrations. A second, "slow" feature is increasingly evident in TKER spectra recorded at shorter lambda(phot). This component, which exhibits no recoil anisotropy, is attributed to H atoms formed by the "statistical" decay of highly vibrationally excited ground state molecules. The form of the TKER spectra observed at short lambda(phot) is rationalized by assuming two possible decay routes for imidazole molecules excited to the 2 (1)A(')((1)pipi(*)) state. One involves fast 2 (1)A(')((1)pipi(*)) right arrow-wavy 1 (1)A(")((1)pisigma(*)) radiationless transfer and subsequent fragmentation on the 1 (1)A(')((1)pisigma(*)) PES, yielding fast H atoms (and imidazolyl cofragments)-reminiscent of behavior seen at longer excitation wavelengths where the 1 (1)A(")((1)pisigma(*)) PES is accessed directly. The second is assumed to involve radiationless transfer to the ground state, most probably by successive 2 (1)A(') right arrow-wavy 1 (1)A(") right arrow-wavy X (1)A(') couplings, mediated by conical intersections between the relevant PESs and the subsequent unimolecular decay of the resulting highly vibrationally excited ground state molecules yielding slow H atoms.  相似文献   

7.
Theoretical examination [B3LYP/6-31G(d,p), PP/IGLO-III//B3LYP/6-31G(d,p), and NBO methods] of six-membered cyclohexane 1 and carbonyl-, thiocarbonyl-, or methylidene-containing derivatives 2-27 afforded precise structural (in particular, C-H bond distances) and spectroscopic (specifically, one-bond (1)J(C)(-)(H) NMR coupling constants) data that show the consequences of stereoelectronic hyperconjugative effects in these systems. Major observations include the following. (1) sigma(C)(-)(H)(ax)() -->(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() (Y = O, S, or CH(2)) hyperconjugation leads to a shortening (strengthening) of the equatorial C-H bonds adjacent to the pi group. This effect is reflected in smaller (1)J(C)(-)(H)(ax)() coupling constants relative to (1)J(C)(-)(H)(eq)(). (2) Comparison of the structural and spectroscopic consequences of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) hyperconjugation in cyclohexanone 2, thiocyclohexanone 3, and methylenecyclohexane 4 suggests a relative order of acceptor orbital ability C=S > C=O > C=CH(2), which is in line with available pK(a) data. (3) Analysis of the structural and spectroscopic data gathered for heterocyclic derivatives 5-12 reveals some additivity of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y), pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)(), n(X) --> sigma(C)(-)(H)(ax)(), n(beta)(O) --> sigma(C)(-)(H)(eq)(), and sigma(S)(-)(C) --> sigma(C)(-)(H)(eq)() stereoelectronic effects that is, nevertheless, attenuated by saturation effects. (4) Modulation of the C=Y acceptor character of the exocyclic pigroup by conjugation with alpha-heteroatoms O, N, and S in lactones, lactams, and methylidenic analogues 13-24 results in decreased sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() hyperconjugation. (5) Additivity of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() hyperconjugative effects is also apparent in 1,3-dicarbonyl derivative 25 (C=Y equal to C=O), 1,3-dithiocarbonyl derivative 26 (C=Y equal to C=S), and 1,3-dimethylidenic analogue 27 (C=Y equal to C=CH(2)).  相似文献   

8.
The photoinduced hydrogen elimination reaction in phenol via the conical intersections of the dissociative 1pi sigma* state with the 1pi pi* state and the electronic ground state has been investigated by time-dependent quantum wave-packet calculations. A model including three intersecting electronic potential-energy surfaces (S0, 1pi sigma*, and 1pi pi*) and two nuclear degrees of freedom (OH stretching and OH torsion) has been constructed on the basis of accurate ab initio multireference electronic-structure data. The electronic population transfer processes at the conical intersections, the branching ratio between the two dissociation channels, and their dependence on the initial vibrational levels have been investigated by photoexciting phenol from different vibrational levels of its ground electronic state. The nonadiabatic transitions between the excited states and the ground state occur on a time scale of a few tens of femtoseconds if the 1pi pi*-1pi sigma* conical intersection is directly accessible, which requires the excitation of at least one quantum of the OH stretching mode in the 1pi pi* state. It is shown that the node structure, which is imposed on the nuclear wave packet by the initial preparation as well as by the transition through the first conical intersection (1pi pi*-1pi sigma*), has a profound effect on the nonadiabatic dynamics at the second conical intersection (1pi sigma*-S0). These findings suggest that laser control of the photodissociation of phenol via IR mode-specific excitation of vibrational levels in the electronic ground state should be possible.  相似文献   

9.
Optical study of OH radical in a wire-plate pulsed corona discharge   总被引:1,自引:0,他引:1  
In this study, the emission spectra of OH (A2sigma --> X2pi, 0-0) emitted from the high-voltage pulsed corona discharge (HVPCD) of N2 and H2O mixture gas and humid air in a wire-plate reactor were successfully recorded against a severe electromagnetic interference coming from HVPCD at one atmosphere. The relative vibrational populations and the vibrational temperature of N2 (C, v') were determined. The emission spectra of the deltaupsilon = +1 (1-0, 2-1, 3-2, 4-3) vibration transition band of N2 (C3pi(u) --> B3pi(g)) is simulated through gauss distribution. The emission intensity of OH (A2sigma --> X2pi, 0-0) has been exactly gotten by subtracting the emission intensity of the deltaupsilon = +1 vibration transition band of N2 (C3pi(u) --> B3pi(g)) from the overlapping spectra. The relative population of OH (A2sigma) has been obtained by the emission intensity of OH (A2sigma --> X2pi, 0-0) and Einstein's transition probability. The influences of pulsed peak voltage and pulse repetition rate on the relative population of OH (A2sigma) radicals in N2 and H2O mixture gas and humid air are investigated separately. It is found that the relative population of OH (A2sigma) rises linearly with increasing the applied peak voltage and the pulse repetition rate. When the oxygen is added in N2 and H2O mixture gas, the relative population of OH (A2sigma) radicals decreases exponentially with increasing the added oxygen. The main involved physicochemical processes have also been discussed.  相似文献   

10.
The fragmentation dynamics of indole molecules following excitation at 193.3 nm, and at a number of different wavelengths in the range 240 < or = lambda(phot) < or = 286 nm, have been investigated by H Rydberg atom photofragment translational spectroscopy. The longer wavelength measurements have been complemented by measurements of excitation spectra for forming parent and fragment ions by two (or more) photon ionisation processes. Analysis identifies at least three distinct contributions to the observed H atom yield, two of which are attributable to dissociation of indole following radiationless transfer from the 1pi pi* excited states (traditionally labelled 1L(b) and 1L(a)) prepared by UV single photon absorption. The structured channel evident in total kinetic energy release (TKER) spectra recorded at lambda(phot) < or = 263 nm is rationalised in terms of N-H bond fission following initial pi* <-- pi excitation and subsequent coupling to the 1pi sigma* potential energy surface via a conical intersection between the respective surfaces--thereby validating recent theoretical predictions regarding the importance of this process (Sobolewski et al., Phys. Chem. Chem. Phys., 2002, 4, 1093). Analysis provides an upper limit for the N-H bond strength in indole: D0(H-indolyl) < or = 31,900 cm(-1). Unimolecular decay of highly vibrationally excited ground state molecules formed by internal conversion from the initially prepared 1pi pi* states is a source of (slow) H atoms but their contribution to the TKER spectra measured in the present work is dwarfed by that from H atoms generated by one or more (unintended but unavoidable) multiphoton processes.  相似文献   

11.
The gas-phase electron transmission (ET) and dissociative electron attachment (DEA) spectra are reported for the series of (bromoalkyl)benzenes C6H5(CH2)nBr (n = 0-3), where the bromine atom is directly bonded to a benzene ring or separated from it by 1-3 CH2 groups, and the dihalo derivative 1-Br-4-Cl-benzene. The relative DEA cross sections (essentially due to the Br- fragment) are reported, and the absolute cross sections are also evaluated. HF/6-31G and B3LYP/6-31G* calculations are employed to evaluate the virtual orbital energies (VOEs) for the optimized geometries of the neutral state molecules. The pi* VOEs, scaled with empirical equations, satisfactorily reproduce the corresponding experimental vertical electron attachment energies (VAEs). According to the calculated localization properties, the LUMO (as well as the singly occupied MO of the lowest lying anion state) of C6H5(CH2)3Br is largely localized on both the benzene ring and the C-Br bond, despite only a small pi*/sigma*C-Br interaction and in contrast to the chlorine analogue where the LUMO is predicted to possess essentially ring pi character. This would imply a less important role of intramolecular electron transfer in the bromo derivative for production of the halogen negative fragment through dissociation of the first resonant state. The VAEs calculated as the anion/neutral energy difference with the 6-31+G* basis set which includes diffuse functions are relatively close to the experimental values but do not parallel their sequence. In addition the SOMO of some compounds is not described as a valence MO with large pi* character but as a diffuse sigma* MO.  相似文献   

12.
We report state-to-state cross sections and thermal rate constants for vibrational and rotational relaxation of OH(2pi) by collision with H atoms. The cross sections are calculated by the coupled-states (CS) statistical method including the full open-shell character of the OH + H system. Four potential energy surfaces (PESs) ((1,3)A' and (1,3)A') describe the interaction of OH(X2pi) with H atoms. Of these, three are repulsive, and one (1A') correlates with the deep H2O well. Consequently, rotationally and ro-vibrationally inelastic scattering of OH in collisions with H can occur by scattering on the repulsive PESs, in a manner similar to the inelastic scattering of OH by noble gas atoms, or by collisions which enter the H2O well and then reemerge. At 300 K, we predict large (approximately 1 x 10(-10) cm3 molecule(-1) s(-1)) vibrational relaxation rates out of both v = 2 and v = 1, comparable to earlier experimental observations. This anomalously fast relaxation results from capture into the H2O complex. There exists a significant propensity toward formation of OH in the pi(A') lambda-doublet level. We also report state-resolved cross sections and rate constants for rotational excitation within the OH v = 0 manifold. Collisional excitation from the F1 to the F2 spin-orbit manifold leads to an inverted lambda-doublet population.  相似文献   

13.
The electron transmission and dissociative electron attachment spectra of the 1-chloroalkyl benzene derivatives, C(6)H(5)(CH(2))(3)Cl and C(6)H(5)(CH(2))(4)Cl, and of the sulfur and silicon derivatives, C(6)H(5)SCH(2)Cl, C(6)H(5)Si(CH(3))(2)CH(2)Cl and C(6)H(5)CH(2)Si(CH(3))(2)CH(2)Cl, are presented for the first time. The relative Cl(-) fragment anion currents generated by electron attachment to the benzene pi* LUMO are measured in the series C(6)H(5)(CH(2))(n)Cl, with n = 1-4, and in the heteroatomic compounds. The Cl(-) yield reflects the rate of intramolecular electron transfer between the pi-system and the remote chlorine atom, which in turn depends on the extent of through-bond coupling between the localized pi* and sigma*(Cl-C) orbitals. In compounds C(6)H(5)(CH(2))(n)Cl the Cl(-) current rapidly decreases with increasing length of the saturated chain. This decrease is significantly attenuated when a carbon atom of the alkyl skeleton is replaced with a third-row heteroatom. This greater ability to promote through-bond coupling between the pi* and sigma*(Cl-C) orbitals is attributed to the sizably lower energy of the empty sigma*(S-C) and sigma*(Si-C) orbitals with respect to the sigma*(C-C) orbitals. In the sulfur derivative the increase of the Cl(-) current is larger than in the silicon analogue. In this case, however, other negative fragments are observed, due to dissociation of the S-C bonds.  相似文献   

14.
Mo2(OtBu)6 and Mo2(NMe2)6 each react with (S,S,S)-triisopropanolamine (2 equiv) in benzene to yield dimolybdenum bis((S,S,S)-isopropanolaminate(3-)), Mo2[(OC-(S)-HMeCH2)3N]2 (M identical to M), as a blue crystalline solid. Cell parameters at -160 degrees C: a = 17.389(6) A, b = 10.843(3) A, c = 10.463(3) A, beta = 125.28(1) degrees, Z = 2 in space group C2. The molecular structure involves an Mo2 unit inside an O6N2 distorted cubic box. The Mo2 axis is disordered about three positions with occupancy factors of ca. 45%, 45%, and 10%. Despite this disorder, the molecular structure is shown to contain a central Mo identical to Mo unit of distance 2.15(3) A coordinated to two triolate ligands which each have two chelating arms and one that spans the Mo identical to Mo bond. The local Mo2O6N2 moiety has approximate C2h symmetry, and the Mo-N distances are long, 2.4 A. The 1H and 13C(1H) NMR spectra recorded in benzene-d6 are consistent with the geometry found in the solid-state structure. The blue color arises from weak absorptions, epsilon approximately 150 dm3 mol-1 cm-1, at 580 and 450 nm in the visible region of the electronic absorption spectrum. Raman spectra recorded in KCl reveal pronounced resonance effects with excitation wavelengths of 488.0, 514.5, and 568.2 nm, particularly for the 322 cm-1 band, which can probably be assigned to nu(Mo identical to Mo). The electronic structure of this compound is investigated by B3LYP DFT calculations, and a comparison is made with the more typical ethane-like (D3d) Mo2(OR)6 compounds is presented. The distortion imposed on the molecule by the triisopropanolaminate(3-) ligands removes the degeneracy of the M-M pi molecular orbitals. The HOMO and SHOMO are both M-M pi and M-O sigma* in character, while the LUMO is M-M pi* and the SLUMO is predominantly M-O sigma* with metal sp character. The calculated singlet-singlet transition energies are compared with those implicit in the observed electronic spectrum.  相似文献   

15.
The photodissociation dynamics of 2,5-dimethylpyrrole (2,5-DMP) has been investigated following excitation at 193.3 nm and at many near ultraviolet (UV) wavelengths in the range 244 < lambda(phot) < 282 nm using H Rydberg atom photofragment translational spectroscopy (PTS). Complementary UV absorption and, at the longest excitation wavelengths, one photon resonant multiphoton ionisation spectra of 2,5-DMP are reported also; analysis of the latter highlights the role of methyl torsional motions in promoting the parent absorption. The deduced fragmentation dynamics show parallels with that reported recently (B. Cronin, M. G. D. Nix, R. H. Qadiri and M. N. R. Ashfold, Phys. Chem. Chem. Phys., 2004, 6, 5031) for the bare pyrrole molecule. Excitation at the longer wavelengths leads to (vibronically induced) population of the 1(1)A(2)(pisigma*) excited state of 2,5-DMP, but once lambda(phot) decreases to approximately 250 nm stronger, dipole allowed transitions start to become apparent in the parent absorption. All total kinetic energy release (TKER) spectra of the H + 2,5-dimethylpyrrolyl (2,5-DMPyl) fragments measured at lambda(phot)> or=244 nm show a structured fast component, many of which are dominated by a peak with TKER approximately 5100 cm(-1); analysis of this structure reveals lambda(phot) dependent population of selected vibrational levels of 2,5-DMPyl, and enables determination of the N-H bond strength in 2,5-DMP: D(0) = 30 530 +/- 100 cm(-1). Two classes of behaviour are proposed to account for details of the observed energy partitioning. Both assume that N-H bond fission involves passage over (or tunnelling through) a small exit channel barrier on the 1(1)A(2) potential energy surface, but differ according to the vibrational energy content of the photo-prepared molecules. Specific parent out-of-plane skeletal modes that promote the 1(1)A(2)-X(1)A(1) absorption appear to evolve adiabatically into the corresponding vibrations of the 2,5-DMPyl products. Methyl torsions can also promote the 1(1)A(2)<-- X(1)A(1) absorption in 2,5-DMP, and provide a means of populating a much higher density of excited vibrational levels than in pyrrole. Such excited levels are deduced to dissociate by redistributing the minimum amount of internal energy necessary to overcome the exit channel barrier in the N-H dissociation coordinate. Coupling with the ground state surface via a conical intersection at extended N-H bond lengths is proposed as a further mechanism for modest translational --> vibrational energy transfer within the separating products. The parent absorption cross-section increases considerably at wavelengths approximately 250 nm, and PTS spectra recorded at lambda(phot)< or = 254 nm display a second, unstructured, peak at lower TKER. As in pyrrole, this slower component is attributed to H atoms from the unimolecular decay of highly vibrationally excited ground state molecules formed via radiationless decay from photo-excited states lying above the 1(1)A(2) state.  相似文献   

16.
Excitation-energy dependence of fluorescence intensity and fluorescence lifetime has been measured for 4-dimethylaminobenzonitrile (DMABN), 4-aminobenzonitrile (ABN), 4-diisopropylaminobenzonitrile (DIABN), and 1-naphthonitrile (NN) in a supersonic free jet. In all cases, the fluorescence yield decreases rather dramatically, whereas the fluorescence lifetime decreases only moderately for S1 (pi pi*, L(b)) excess vibrational energy exceeding about 1000 cm(-1). This is confirmed by comparison of the normalized fluorescence excitation spectrum with the absorption spectrum of the compound in the vapor phase. The result indicates that the strong decrease in the relative fluorescence yield at higher energies is due mostly to a decrease in the radiative decay rate of the emitting state. Comparison of the experimental results with the TDDFT potential energy curves for excited states strongly suggests that the decrease in the radiative decay rate of the aminobenzonitriles at higher energies is due to the crossing of the pi pi* singlet state by the lower-lying pi sigma*(C[triple bond]N) singlet state of very small radiative decay rate. The threshold energy for the fluorescence "break-off" is in good agreement with the computed energy barrier for the pi pi*/pi sigma* crossing. For NN, on the other hand, the observed decrease is in fluorescence yield at higher excitation energies can best be attributed to the crossing of the pi pi* singlet state by the pi sigma* triplet state.  相似文献   

17.
We report high-resolution C 1s near-edge x-ray-absorption fine-structure (NEXAFS) spectra of the C6-ring-containing molecules benzene (C6H6), 1,3- and 1,4-cyclohexadiene (C6H8), cyclohexene (C6H10), cyclohexane (C6H12), styrene (C8H8), and ethylbenzene (C8H10) which allow us to examine the gradual development of delocalization of the corresponding pi electron systems. Due to the high experimental resolution, vibrational progressions can be partly resolved in the spectra. The experimental spectra are compared with theoretical NEXAFS spectra obtained from density-functional theory calculations where electronic final-state relaxation is accounted for. The comparison yields very good agreement between theoretical spectra and experimental results. In all cases, the spectra can be described by excitations to pi*- and sigma*-type final-state orbitals with valence character, while final-state orbitals of Rydberg character make only minor contributions. The lowest C 1s-->1pi* excitation energy is found to agree in the (experimental and theoretical) spectra of all molecules except for 1,3-cyclohexadiene (C6H8) where an energy smaller by about 0.6 eV is obtained. The theoretical analysis can explain this result by different binding properties of this molecule compared to the others.  相似文献   

18.
The unusual and unique ability of O2 as target gas in kV collision-induced dissociations, to enhance a specific fragmentation of a mass selected ion, has been examined in detail. The affected dissociations studied were the loss of CH3* from CH3CH+X (X = OH, CH3, NH2, SH); CH3* and C1* loss from CH3C+(C1)CH3; C2H5* loss from CH3CH2CH+X (X = OH and NH2); H* loss from +CH2OH and +CH2NH2; O loss from 1,2-, 1,3-, and 1,4-C6H4(NO2)2+*; CH3NO+*; C6HsNO2+*; C5H5NO+* (pyridine N-oxide); 3- and 4-CH3C5H4NO+*. A general explanation of the phenomena, which was semiquantitatively tested in the present work, can be summarized as follows: the ion - O2 encounter excites the target molecules to their 3sigma(g)- state which resonantly return this energy to electronic state(s) in the ion. The excited ion now contains a sharp excess of a narrow range of internal energies, thus significantly and only enhancing fragmentations whose activation energies lie within this small energy manifold.  相似文献   

19.
The temporary anion states of isothiocyanates CH3CH2=C=S (and CH3CH2N=C=O for comparison), C6H5CH2N=C=S, and C6H5N=C=S are characterized experimentally in the gas phase for the first time by means of electron transmission spectroscopy (ETS). The measured vertical electron attachment energies (VAEs) are compared with the virtual orbital energies of the neutral-state molecules supplied by MP2 and B3LYP calculations with the 6-31G* basis set. The calculated energies, scaled with empirical equations, reproduce satisfactorily the experimental VAEs. The first VAE is also closely reproduced as the total energy difference between the anion and neutral states calculated at the B3LYP/6-31+G* level. Due to mixing between the ring and N=C=S pi-systems, C6H5N=C=S possesses the best electron-acceptor properties, and its lowest-lying anion state is largely localized at the benzene ring. The anion states with mainly pi*C=S and pi*N=C character lie at higher energy than the corresponding anion states of noncumulated pi-systems. However, the electron-acceptor properties of isothiocyanates are found to be notably larger than those of the corresponding oxygen analogues (isocyanates). The dissociative electron attachment (DEA) spectra show peaks close to zero energy and at 0.6 eV, essentially due to NCS- negative fragments. In spite of the energy proximity of the first anion state in phenyl isothiocyanate to the DEA peak, the zero-energy anion current in the benzyl derivative is about 1 order of magnitude larger.  相似文献   

20.
The X 2pi(g), 2sigma(g)+, and 2delta(g) states of AgCl2 have been studied through benchmark ab initio complete active space self-consistent field plus second-order complete active space multireference Moller-Plesset algorithm (CASSCF+CASPT2) and complete active space self-consistent field plus averaged coupled pair functional (CASSCF+ACPF) and density-functional theory (DFT) calculations using especially developed basis sets to study the transition energies, geometries, vibrational frequencies, Mulliken charges, and spin densities. The spin-orbit (SO) effects were included through the effective Hamiltonian formalism using the LambdaSSigma ACPF energies as diagonal elements. At the ACPF level, the ground state is 2pi(g) in contradiction with ligand-field theory, SCF, and large CASSCF; the adiabatic excitation energies for the 2sigma(g)+ and 2delta(g) states are 1640 and 18,230 cm(-1), respectively. The inclusion of the SO effects leads to a pure omega = 32(2pi(g)) ground state, a omega = 12 (66%2pi(g) and 34%2sigma(g)+) A state, a omega = 12 (34%2pi(g) and 66%2sigma(g)+) B state, a omega = 52(2delta(g))C state, and a omega = 32(99%2delta(g))D state. The X-A, X-B, X-C, and X-D transition energies are 485, 3715, 17 246, and 20 110 cm(-1), respectively. The B97-2, B3LYP, and PBE0 functionals overestimate by approximately 100% the X 2pi(g)-2sigma(g)+T(e) but provide a qualitative energetic ordering in good agreement with ACPF results. B3LYP with variable exchange leads to a 42% optimal Hartree-Fock exchange for transition energies but all equilibrium geometries get worsened. Asymptotic corrections to B3LYP do not provide improved values. The nature of the bonding in the X 2pi(g) state is very different from that of CuCl2 since the Mulliken charge on the metal is 1.1 while the spin density is only 0.35. DFT strongly delocalizes the spin density providing even smaller values of around 0.18 on Ag not only for the ground state, but also for the 2sigma(g)+ state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号