首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high yielding (93%), regiospecific synthesis of cis(4,4')-di(carbomethoxybenzo)-30-crown-10 (1c) is reported. The derived crown ether diol 1d was converted to pyridyl cryptand 12 in 44% yield by reaction with pyridine-2,6-dicarbonyl chloride. Binding of two different 4,4'-bipyridinium (paraquat) species (3) and 2,2'-bipyridinium (diquat) 4 by 12 was explored via (1)H NMR spectroscopy, NOE experiments, mass spectrometry, X-ray crystallographic analyses, and isothermal titration calorimetry. Cryptand 12 exhibits the highest association constant for diquat ever reported (Ka = 1.9 x 10(6) M(-1)) and very high association constants for paraquats (Ka > 10(5) M(-1)) in acetone at 22 degrees C. The binding constant of diquat 4 by cryptand 12 is nearly 6-times higher than any other reported host.  相似文献   

2.
Cryptands 4 and 5 were synthesized from cis- and trans-bis(hydroxymethylbenzo)-24-crown-8 by reaction with pyridine-2,6-dicarboxylic acid chloride in 42 and 48% yields, respectively. The new cryptands form pseudorotaxanes with the paraquat derivative N,N'-bis(beta-hydroxyethyl)-4,4'-bipyridinium bis(hexafluorophosphate) ("paraquat diol", 6): Ka=1.0x10(4) and 1.4x10(4) M-1, respectively. The cryptands also form complexes with ammonium hexafluorophosphate. Formation of the paraquat/cryptand-based pseudorotaxanes can be switched off and on in a controllable manner on the basis of the cryptands' abilities to complex KPF6 strongly, providing a new mechanism for control of molecular shuttles. K+ displaces paraquat diol from the cryptands, converting yellow-orange solutions to colorless; however, addition of 18-crown-6 binds the KPF6 and allows the colored cryptand-paraquat complex to reform. Crystal structures are reported for both cryptands, both paraquat diol-based pseudorotaxanes, both NH4PF6 complexes, and both KPF6 complexes.  相似文献   

3.
Four new bis(m-phenylene)-32-crown-10-based cryptands with different third bridges were prepared. Their complexes with paraquat derivatives were studied by proton NMR spectroscopy, mass spectrometry, and X-ray analysis. It was found that these cryptands bind paraquat derivatives very strongly. Specifically, a diester cryptand with a pyridyl nitrogen atom located at a site occupied by either water or a PF(6) anion in analogous complexes exhibited the highest association constant K(a) = 5.0 x 10(6) M(-1) in acetone with paraquat, 9000 times greater than the crown ether system. X-ray structures of this and analogous complexes demonstrate that improved complexation with this host is a consequence of preorganization, adequate ring size for occupation by the guest, and the proper location of the pyridyl N-atom for binding to the beta-pyridinium hydrogens of the paraquat guests. This readily accessible cryptand is one of the most powerful hosts reported for paraquats.  相似文献   

4.
A new cryptand, bis(1,3,5-phenylene)tri(1,4,7,10-tetraoxadecyl) (3a), has been synthesized in good yield from bis(5-hydroxy-1,3-phenylene)-26-crown-8 (2a) and tri(ethylene glycol) ditosylate using pseudo-high dilution conditions. 3a forms a strong 1:1 complex with paraquat (1) in acetone solution with a high apparent association constant, 1.4 x 10(4) M(-)(1). A stoichiometry of 1:1 was also observed by mass spectrometry in the gaseous state. However, in the solid state, as determined by X-ray crystallography, the two complexes of 3a and the previously reported homologous cryptand, bis(1,3,5-phenylene)tri(1,4,7,10,13-pentaoxatridecyl) (3b), with paraquat (1) have 2:1 stoichiometry. A unique feature of these trimolecular pseudorotaxane-like complexes is that the guest occupies parts of the cavities of two cryptand molecules. For the first time it was found that in cryptand-based complexes, different stoichiometries are possible for the same host-guest pair.  相似文献   

5.
Dibenzo-24-crown-8-based cryptand 4 forms 1:1 inclusion complexes with three paraquat derivatives, P1, P2, and P3, as demonstrated by proton NMR spectroscopy and X-ray analysis. However, it was found that methyl-substituted paraquat derivatives, P2 and P3, can bind cryptand 4 more strongly than non-methyl-substituted paraquat derivative P1. The association constants (Ka) were determined in acetone by using a UV-vis titration method to be 5.0 x 10(3) M(-1) for 4.P1, 1.0 x 10(5) M(-1) for 4.P2, and 1.2 x 10(5) M(-1) for 4.P3, respectively. In the solid state, 4.P2 and 4.P3 have similar T-type inclusion complexation conformations, which are very different from the pseudorotaxane-type complexation conformation of 4.P1. Theoretical calculations were done to explain these experimental results.  相似文献   

6.
Seven diquat-based inclusion [2]complexes were studied by proton NMR spectroscopy, electrospray ionization mass spectrometry, and X-ray analysis. The hosts used in these inclusion [2]complexes are bis(5-hydroxymethyl-1,3-phenylene)-32-crown-10, a bis(m-phenylene)-26-crown-8-based cryptand, and five bis(m-phenylene)-32-crown-10-based cryptands. Bis(m-phenylene)-32-crown-10-based cryptands have been proved to be able to complex diquat much more strongly than bis(m-phenylene)-32-crown-10 itself and one containing a pyridyl moiety has one of the highest Ka values reported to date. These hosts form 1:1 complexes with diquat in solution and in the solid state. It was found that the improved binding from bis(m-phenylene)-32-crown-10 to bis(5-hydroxymethyl-1,3-phenylene)-32-crown-10 was due to a supramolecular cryptand structure formed by chelation of the two terminal OH moieties of bis(5-hydroxymethyl-1,3-phenylene)-32-crown-10 with a water molecule as a hydrogen-bonding bridge.  相似文献   

7.
Two isomers of bis(carbomethoxybenzo)-24-crown-8 (cis-BCMB24C8, 1, and trans-BCMB24C8, 2) were synthesized regiospecifically with acceptable to excellent yields. Cyclization in the presence of a template reagent, KPF(6), led to an essentially quantitative yield of the potassium complex of the crown ether 1; the isolated cyclization yield of pure was a remarkable 89%! The methods not only avoid the very difficult separation of the isomers, but also greatly shorten the synthesis time by eliminating syringe pump usage during cyclization. The complexations of the isomeric BCMB24C8 with dibenzylammonium hexafluorophosphate (10) were studied by NMR; association constants (Ka) for 1 and 2 with the dibenzylammonium cation are 190 and 312 M(-1), respectively. The X-ray crystal structures of crown ether and the complexes 1.KPF(6), 2.KPF(6) and pseudorotaxane 2.10 were determined.  相似文献   

8.
The complexation reactions between Tl+ ion and dibenzo-30-crown-10 (DB30C10), dibenzo-24-crown-8 (DB24C8), dibenzo-21-crown-7 (DB21C7), and aza-18-crown-6 (A18C6) were studied in different dimethylformamide-acetonitrile mixtures at various temperatures. The formation constants of the resulting 1 : 1 complexes were determined from the molar conductance-mole ratio data and found to vary in the order A18C6 > DB30C10 > DB21C7 > DB24C8. The enthalpy and entropy of complexation were determined from the temperature dependence of the formation constants.  相似文献   

9.
A conductance study of the interaction between Rb+ and Cs+ ions and18-crown-6 (18C6), dicyclohexyl-18-crown-6 (DC18C6), dibenzo-18-crown-6 (DB18C6),dibenzo-24-crown-8 (DB24C8), and dibenzo-30-crown-10 (DB30C10) inacetonitrile solution has been carried out at various temperatures. The formationconstants of the resulting 1:1 complexes were determined from the molarconductance-mole ratio data and found to vary in the orderDC18C6 > 18C6 > DB30C10 > DB18C6 DB24C8for Rb+ ion andDC18C6 > 18C6 > DB30C10 DB24C8 > DB18C6for Cs+ ion. The enthalpy and entropy of complexation were determined fromthe temperature dependence of the formation constants. The complexes with the18-crowns are both enthalpy and entropy stabilized while, in the case of largecrown ethers, the corresponding complexes are enthalpy stabilized but entropydestabilized.  相似文献   

10.
Abdine H  Belal F 《Talanta》2002,57(1):97-104
Dibenzo-18-crown-6 (DB18C6) is used for the liquid-liquid extraction, and recovery of titanium from paints, pigment, paper and pulp industries. The extraction mechanism of titanium(IV) from pH 4 medium with DB18C6 in dichloromethane was investigated. The DB18C6 concentration in organic phase, the concentration of titanium, the effect of pH and interference ions such as Mo(6+), V(5+), Nb(5+), Ta(5+), Zr(4+), Fe(3+), etc. in the aqueous phase and the temperature on the distribution coefficient for the Ti(IV) have been examined. The titanium was determined by spectrophotometric and inductively coupled plasma atomic emission spectroscopic (ICP-AES) method. Titanium forms a colourless complex with DB18C6 at pH 4.0 which is extracted with dichloromethane having molar absorptivity 1.53x10(4) lmol(-1)cm(-1) at 285 nm. It obeys Beer's law in the range of 0.16-3.84 ppm of titanium. The colour was developed with thiocyanate which has molar absorptivity 1.50x10(3) lmol(-1)cm(-1) at 425 nm. The extract is directly inserted in the plasma for ICP-AES measurement, which enhance the sensitivity several folds and the limits for estimation are 0.5-30 ngml(-1). The overall formation (logbeta(2)K'e) and extraction (K(ex)) constants calculated are 18.61+/-0.02 and 1.03+/-0.03x10(-10), respectively. The transportation of titanium has been discussed. The titanium is preconcentrated and determined in standard and environmental samples.  相似文献   

11.
Two novel bis(p-phenylene)-34-crown-10-based cryptand constitutional isomers were prepared and their host–guest complexations with paraquat were studied by ESI-MS, UV–vis spectroscopy, 1H NMR spectra, and X-ray crystal structures. Notably, though the only difference between the two hosts is the location of the nitrogen atom on the third arms, they exhibited quite different binding abilities with paraquat. Competitive complexation was carried out and it may provide a simple way to construct sophisticated supramolecular materials with reversibility and adaptability.  相似文献   

12.
The pseudorotaxane complex of the new hydroxymethyl cryptand 3 with N,N'-dimethyl-4,4'-bipyridinium bis(hexafluorophosphate), PQ(PF6)2, has an association constant of 2.0(+/-0.3) x 10(4) M(-1). In the crystal structure of 3 x PQ(PF6)2 one of the bonding elements appears to be an aromatic edge-to-face interaction of a paraquat beta-proton with the hydroquinone moiety; this is the first time this interaction has been reported between a cryptand and paraquat.  相似文献   

13.
The reaction of a slurry of BaBr(2) in a minimal amount of tetrahydrofuran (THF) with 2 equiv of Na(H(3)BNMe(2)BH(3)) in diethyl ether followed by crystallization from diethyl ether at -20 °C yields crystals of Ba(H(3)BNMe(2)BH(3))(2)(Et(2)O)(2) (1). Drying 1 at room temperature under vacuum gives the partially desolvated analogue Ba(H(3)BNMe(2)BH(3))(2)(Et(2)O)(x) (1') as a free-flowing white solid, where the value of x varies from <0.1 to about 0.4 depending on whether desolvation is carried out with or without heating. The reaction of 1 or 1' with Lewis bases that bind more strongly to barium than diethyl ether results in the formation of new complexes Ba(H(3)BNMe(2)BH(3))(2)(L), where L = 1,2-dimethoxyethane (2), N,N,N',N'-tetramethylethylenediamine (3), 12-crown-4 (4), 18-crown-6 (5), N,N,N',N'-tetraethylethylenediamine (6), and N,N,N',N",N"-pentamethylethylenetriamine (7). Recrystallization of 4 and 5 from THF affords the related compounds Ba(H(3)BNMe(2)BH(3))(2)(12-crown-4)(THF)·THF (4') and Ba(H(3)BNMe(2)BH(3))(2)(18-crown-6)·2THF (5'). In addition, the reaction of BaBr(2) with 2 equiv of Na(H(3)BNMe(2)BH(3)) in the presence of diglyme yields Ba(H(3)BNMe(2)BH(3))(2)(diglyme)(2) (8), and the reaction of 1 with 15-crown-5 affords the diadduct [Ba(15-crown-5)(2)][H(3)BNMe(2)BH(3)](2) (9). Finally, the reaction of BaBr(2) with Na(H(3)BNMe(2)BH(3)) in THF, followed by the addition of 12-crown-4, affords the unusual salt [Na(12-crown-4)(2)][Ba(H(3)BNMe(2)BH(3))(3)(THF)(2)] (10). All of these complexes have been characterized by IR and (1)H and (11)B NMR spectroscopy, and the structures of compounds 1-3, 4', 5', and 6-10 have been determined by single-crystal X-ray diffraction. As the steric demand of the Lewis bases increases, the structure changes from polymers to dimers to monomers and then to charge-separated species. Despite the fact that several of the barium complexes are monomeric in the solid state, none is appreciably volatile up to 200 °C at 10(-2) Torr.  相似文献   

14.
The formation of molecular complexes between 2,4,6-trinitrophenol (TNP) and aza-substituted macrocycles diaza-18-crown-6 (DA18C6), tetraaza-14-crown-4 (TA14C4) and cryptand C222 in 1,2-dichloroethane solution was investigated spectrophotometrically and conductometrically. The mole ratio and continuous variations studies based on both physicochemical techniques employed clearly revealed the formation of both 1:1 and 2:1 (TNP:macrocycle) adducts in solution. Formation of the resulting complexes was also confirmed by 1H NMR and IR spectroscopic studies. Formation constants of the resulting complexes were evaluated from computer fitting of the corresponding mole ratio data. Stability of the resulting complexes was found to vary in the order C222 approximately TA14C4 > DA18C6.  相似文献   

15.
A novel bis(m-phenylene)-26-crown-8-based cryptand has been synthesized. It has been used to prepare two 1:1 complexes with two paraquat derivatives with high association constants (6.5×105 and 4.0×105 M−1) in acetone. In the solid state the cryptand forms a 2:1 threaded structure with paraquat and an interesting supramolecular poly[2]pseudorotaxane threaded structure with a dihydroxyethyl-substituted paraquat derivative, respectively. It has been further used to prepare cryptand/paraquat derivative [2]rotaxanes efficiently by the immediate solvent evaporation method using easily available 3,5-dimethylphenyl groups as the stoppers.  相似文献   

16.
7Li NMR measurements were employed to monitor the stoichiometry andstability of Li+ ion complexes with 12-crown-4 (12C4), 15-crown-5 (15C5), benzo-15-crown-5 (B15C5) l8-crown-6 (18C6), dicyclohexano-18-crown-6 (DC18C6) and dibenzo-18-crown-6 (DB18C6) in binary acetone-nitrobenzene mixtures of varying composition. In all cases studied, the variation of 7Li chemical shift with the crown/Li+ mole ratio indicated the formation of 1:1 complexes. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data to an equation that relates the observed chemical shifts to the formation constant. In all solvent mixtures used, the stabilities of the resulting 1:1 complexes varied in the order15C5 > B15C5 > DC18C6 > 18C6 > 12C4 >DB18C6. It was found that,in the case of all complexes, an increase in the percentage of acetone in thesolvent mixtures significantly decreased the stability of the complexes.  相似文献   

17.
Crystalline complexes of urea and thiourea with crown ethers, have been prepared, viz., 18-crown-6 (18C6), benzo-18-crown-6 (B18C6), dibenzo-18-crown-6 (DB18C6), dicyclohexano-18-crown-6 (DC 18C6) and dibenzo-24-crown-8 (DB24C8). While the complexes of the large ring size crown ether, DB24C8, have high ether to (thio)urea ratios, the stoichiometry of the others lies between one molecule of crown ether and from one to six molecules of (thio)urea. An IR spectral study of the urea and thiourea complexes showed that the behavior of thiourea in these complexes is clearly different from that of urea, indicating the role of sulphur in the interaction of thiourea with crown ethers. The urea and thiourea complexes were classified according to their stoichiometries and their IR spectral behavior into three classes for which credible structures were proposed.  相似文献   

18.
The 1,4-bis(3-guaiazulenylmethylium)benzene and 1,4-bis[1-(4,6,8-trimethylazulenylmethylium)]benzene dication salts were synthesized via an acid-catalyzed condensation/dehydration protocol with guaiazulene-terephthalaldehyde (2 : 1 ratio), and 4,6,8-trimethylazulene-terephthalaldehyde (2 : 1 ratio) respectively in one-pot processes. A similar condensation reaction with the parent azulene led to an insoluble oligomer that was shown by MALDI-TOF-MS to contain 1,4-bis[(diazulenyl)methylium]benzene as a repeating unit. Dication salts and were fully characterized by 2D NMR and NOE techniques and by electrospray-MS (ES-MS) and MALDI-TOF-MS. NMR studies confirm that the dications are best represented as bis-tropylium species. A delicate balance of electronic (inductive stabilization) and steric influence of the alkyl groups on the seven-membered ring seems to influence the chemo-/regioselectivity of the co-condensation process. NMR titration and T(1) measurements established that, despite its highly crowded structure, dication forms host-guest HG complexes with dibenzo-30-crown-10 (DB30C10) and dibenzo-24-crown-8 (DB24C8) in solution, but fails to complex with the smaller dibenzo-18-crown-6 (DB18C6). The corresponding HG cation-molecule cluster ions were also detected in the gas phase by ES-MS, showing the formation of both dication-crown 1 : 1 and 1 : 2 complexes. Similar complexation of dication salt with DB30C10 was observed via NMR titration and T(1) measurements in solution and by ES-MS in the gas phase. Although solution complexation studies (NMR titration) did not indicate stable complex formation between and p-tert-butyl-methoxycalix[8]arene, their [HG](2+) and [H(2)G](2+) clusters were detectable by ES-MS. Solution decomplexation experiments (HG(2+) --> H + G(2+)) were performed on -crown complex by addition of DMSO, acetone, silver tosylate, and tropylium cation salt. Complexation of with DB30C10 was also studied by microcalorimetric titration.  相似文献   

19.
The enthalpies of dilution and densities of aqueous solutions of 12-crown-4, 15-crown-5, 18-crown-6, 1,10-diaza-18-crown-6 and cryptand (222) were measured at 25°C. The excess enthalpies and enthalpic coefficients of solute-solute interactions were calculated by the McMillan-Mayer theory formalism. Values for the apparent molar volumes at infinite dilution were determined by extrapolation. The contributions of the-CH2CH2O-group to values of h2 and to the limiting partial molar volume were calculated for the series of crown ethers studied. It is concluded that the hydrophobic hydration and the hydrophobic solute-solute interaction are predominant in the solutions investigated.  相似文献   

20.
Dinuclear square metallocycles 3a,b assemble spontaneously when M(en)(OTf)2 (M = Pd, Pt) and a 4,4'-bipyridinium ligand are mixed in acetonitrile. Six new [3]catenanes were prepared in good yields by thermodynamically driven self-assembly reaction of molecular squares 3a,b and pi-complementary dioxoaryl cyclophanes. Single-crystal X-ray analyses of the [3]catenanes revealed the insertion of two aromatic units inside the metallocycle cavity. The structures are stabilized by means of a combination of pi-pi stacking, [C-H...pi] interactions, and [C-H...O] hydrogen bonds. [3]Catenane (DB24C8)2-(3a) showed in solid-state two external DB24C8 rings positioned over the Pd(en) corners, which are held in position by [N-H...O] hydrogen bonds. Furthermore, formation of catenane (DB24C8)2-(3a) can be switched off and on in a controllable manner by successive addition of KPF6 and 18-crown-6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号