首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inclusion compounds of the macrocyclic cavitand cucurbit[8]uril (CB[8]) with the nickel(II) complex, {trans-[Ni(en)2(H2O)2]@CB[8]}Cl2 · 23.5H2O, the copper(II) complex, {2[Cu(dien)(bipy)(H2O)]@CB[8]}(ClO4)4 · 11H2O, and the organic molecules, 2(pyCN)@CB[8]} · 16H2O and {2(bpe)@CB[8]} · 17H2O, where bipy is 4,4′-bipyridyl, pyCN is 4-cyanopyridine, and bpe is trans-1,2-bis(4-pyridyl)ethylene, were synthesized. The inclusion compounds with organic molecules were synthesized starting from inclusion compounds of cucurbit[8]uril with cyclam and ethylenediamine complexes of copper(II) and nickel(II) by the guest exchange method, which is based on the replacement of one guest with another in the cavity of the cavitand The resulting compounds were characterized by X-ray diffraction, ESR, 1H NMR, IR, and electronic absorption spectroscopy, and electrospray mass spectrometry. Photochemically induced [2+2]-cycloaddition of two 1,2-bis(4-pyridyl)ethylene molecules included in cucurbit[8]uril was studied. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 25–34, January, 2006.  相似文献   

2.
Inclusion compounds of the macrocyclic cavitand cucurbit[8]uril (CB[8]) with the ruthenium(iii) bis(ethylenediamine) complex {trans-[Ru(en)2Cl2]@CB[8]}Cl·27.5H2O (1), the gold(iii) diethylenetriamine complex {[Au(dien)Cl]@CB[8]}Cl2·11H2O (2), and the gold(iii) and platinum(ii) cyclam complexes (H3O)5{[Au(cyclam)]@CB[8]}Cl8·18H2O (3) and {[Pt(cyclam)]0.11(H2cyclam)0.89@CB[8]}Cl2·16H2O (4), respectively, where cyclam is the tetraazamacrocyclic ligand, were synthesized. The inclusion compounds were synthesized both directly starting from CB[8] and the metal complexes with polyamines (en or dien) and by the two-step method with the use of the cyclic polyamine ligand (cyclam) pre-included into the cavity of the macrocycle. The inclusion compounds were characterized by X-ray diffraction (1, 2, and 4), IR spectroscopy, electrospray ionization mass spectrometry, UV-Vis spectroscopy, and thermogravimetric analysis.  相似文献   

3.
The interaction between the hemicyanine indole derivative H and the cucubit[n]urils Q[7] and Q[8] has been studied using 1H NMR and UV spectroscopy as well as by fluorescence experiments. Competitive studies on the inclusion of H by Q[7] and Q[8] have also been conducted, and reveal that on changing the size of the Q[n] cavity, the binding behaviour can be very different.  相似文献   

4.
Supramolecular compounds of the di-, trideca-, and triacontanuclear aluminum aqua hydroxo complexes, viz., [Al2(OH)2(H2O)8]4+, [Al12(AlO4)(OH)24(H2O)12]7+, and [Al30O8(OH)56(H2O)26]18+, respectively, with the organic macrocyclic cavitand cucurbit[6]uril (C36H36N24O12) were prepared by evaporation of aqueous solutions of aluminum nitrate and cucurbit[6]uril after the addition of pyridine, ammonia, KOH, or NaOH at pH 3.1–3.8. X-ray diffraction study demonstrated that the aqua hydroxo complexes are linked to the macrocycle through hydrogen bonds between the hydroxo and aqua ligands of the polycations and the portal oxygen atoms of cucurbit[6]uril. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 261—268, February, 2006.  相似文献   

5.
New inclusion compounds containing iron(II), cobalt(III), and nickel(II) complexes with the cyclic polyamine ligands cyclam and cyclen in the macrocyclic cavitand cucurbit[8]uril (CB[8]) were obtained: {trans-[Fe(Cyclam)(CO)(OCHO)]@CB[8]}Cl · 15H2O, {cis-[Co(Cyclen)(H2O)Cl]@CB[8]}Cl2 · 20H2O, and {cis-[Ni(Cyclen)(H2O)Cl]@CB[8]}Cl · 12H2O. According to X-ray diffraction data, the complexes are in the cavity of each CB[8] molecule. The complexes of the above molecular formulas were isolated in the solid state as supramolecular compounds with CB[8] and structurally characterized for the first time.  相似文献   

6.
Three lanthanide-based complexes, {Gd2(H2O)10(CB[6])2}·CB[6]·6Cl·12H2O (1), {[Gd2(H2O)8CB[6]2]·(CuCl4)·4Cl·46H2O}n (2), and {Dy2(NO3)2(H2O)10(CB[6])}·4NO3·14H2O (3) (CB[6] = cucurbit[6]uril), were prepared with cucurbit[6]uril (CB[6]). These complexes were characterized by single-crystal X-ray diffraction, elemental analysis, FT-IR spectroscopy, UV–Vis spectroscopy, thermogravimetric analysis and magnetization measurements. Crystallographic results showed that 1 and 3 are dinuclear and crystallize in the triclinic space group Pī, whereas 2 is a 1-D zigzag supramolecular chain that crystallizes in the monoclinic system in C2/c. The results indicated that temperature has a big effect on the supramolecular assemblies and a different structure inducer also leads to the formation of different coordination polymers. Frequency dependence in the ac susceptibility signals was observed in 3.  相似文献   

7.
Three new polyamine Ni(II) complexes, namely [Ni(trien)(phen)](BF4)2 1, [Ni(trien)(bipy)](ClO4)2 2 and [Ni(trien)(en)](ClO4)2 3 [trine = triethylenetetramine, phen = 1,10-phenanthroline, bipy = 2,2′-bipyridyl, en = ethylenediamine] have been synthesized and characterized by physico-chemical and spectroscopic methods. Complexes 1 and 2 crystallize in monoclinic space group P21/c, and possess a distorted octahedral geometry. Significant hydrogen bonding interactions are found in both complexes.  相似文献   

8.
The chain end complexation of a functional PNIPAM by a cucurbit[8]uril-viologen complex causes a shift in its lower critical solution temperature (LCST) by over 5 °C. An instantaneous phase change of the thermally responsive polymer beyond its LCST can be induced by addition of the aqueous cucurbituril host-guest complex. Subsequent decomplexation upon addition of a competitive guest releases the PNIPAM terminus and triggers complete reversibility.  相似文献   

9.
Binding behaviors of cucurbit[6]uril (CB[6]) and cucurbit[7]uril (CB[7]) with a series of bis-pyridinium compounds N, N’-hexamethylenebis(1-alkyl-4-carbamoyl pyridinium bromide) (HBPB-n) (alkyl chain length, n = 6, 8 and 10) guests were investigated using 1H-NMR, ESI–MS and single crystal X-ray diffraction methods. The results show that CB[6] and CB[7] can form [2]pseudorotaxanes with HBPB-n easily. When increasing the length of tail alkyl chain, the binding site of CB[6] at guest molecules changed from the tail to the middle part, while CB[7] remained located over the tail chain. As CB[6] and CB[7] were added in HBPB-8 aqueous solution, a [3]pseudorotaxane was formed by the inclusion of the internal middle site in CB[6] and the tail chain in CB[7].  相似文献   

10.
Three unsymmetrical tetradentate Schiff base ligands, H2salipn, H2salipn-Br4 and H2salipn-Cl2, have been synthesized from the typical condensation reactions of treating 1,2-diaminopropane with salicylaldehyde, 3,5-dibromosalicylaldehyde and 5-chlorosalicylaldehyde, respectively. Treatment of [RuCl2(PPh3)3] with one equivalent of H2salipn or H2salipn-Br4 in the presence of triethylamine in tetrahydrofuran (THF) afforded the corresponding ruthenium(III) complexes [RuIIICl(PPh3)(salipn)] (1) and [RuIIICl(PPh3)(salipn-Br4)] (2). Interaction of [RuHCl(CO)(PPh3)3] with one equivalent of H2salipn-Cl2 or H2salipn-Br4 under the same conditions led to isolation of ruthenium(II) complexes [RuII(CO)(PPh3)(salalipn-Cl2)] (3) and [RuII(CO)(PPh3)(salalipn-Br4)] (4), respectively, in which one of the imine bonds was nucleophilically attacked by hydride to result in the formation of a mixed imine-amine ligand. The molecular structures of 1?1.5CH2Cl2, 2, 3?0.5CH2Cl2 and 4 have been determined by single-crystal X-ray crystallography. The electrochemical properties of 14 were also investigated. Their cyclic voltammograms displayed quasi-reversible Ru(IV)/Ru(III) and Ru(III)/Ru(II) couples with Eo ranging from 0.67 to 1.05 V and 0.74 to 0.80 V vs. Ag/AgCl (0.1 M), respectively.  相似文献   

11.
Interaction between cucurbit[8]uril (Q[8]) with a fungicide, carboxin in aqueous solution, was investigated by 1H-NMR, electronic absorption spectroscopy, and fluorescence spectroscopy. Spectroscopy analysis established a basic interaction model which formed an inclusion complex with a host:guest ratio of 1:1. 1H-NMR showed that Q[8] encapsulated the phenyl ring into its cavity and the rest of the guest molecule stayed outside the host. Comparative in vitro evaluations of the growth inhibitory effects of the inclusion complex solution toward Rhizoctonia solani demonstrated appreciable improvements in the antifungal activity of carboxin through the addition of Q[8]. In comparison with the positive control, improvement was evaluated in terms of area covered by the mycelia of R. solani and their growth inhibition rate. Inclusion complexation of carboxin with Q[8] suggests a potential means for production of an environmentally friendly carboxin-based fungicide to counteract R. solani.  相似文献   

12.
Supramolecular complexation of perylene bis(diimide) (PDI) dyes with the macrocyclic host cucurbit[8]uril (CB[8]) prevents self-aggregation of the dye molecules and enables their use as highly (photo)chemically stable, strongly-emitting fluorophores in water. The complexes are stimuli-responsive to binders and can be electrochemically cycled, leading to reversible on-off fluorescence switching and access to noncovalent formation of higher-order architectures in water.  相似文献   

13.
A new 1:2 inclusion complex of cucurbit[8]uril (CB[8]) and protonated N-phenylpiperazine was synthesized and characterized by 1H NMR and X-ray crystallography. The crystal structure showed that the phenyl rings of the two equivalents of guest encapsulated in the cavity of CB[8] are parallel to one another with a mean plane separation of 3.899 Å. In contrast, the piperazinyl phenyl ammonium moieties slightly protrude from the ureidyl carbonyl lined portals in order to accommodate the ion–dipole interaction between host and guest which provides a substantial driving force for the assembly. The oxygen atoms of the carbonyl groups form hydrogen bonds with the hydrogen atoms in both bridging methylene groups of CB[8] and water molecules. There are also hydrogen bonds formed among CB[8], water, and the protonated piperazinyl rings. These hydrogen bonds are formed between the ureidyl C=O groups and hydrogens in methylenes of piperazinyl rings; through hydrogen bonding N+–H···O(H)–H···O=C. The protonated piperazinyl rings connect the carbonyl groups with the bridging water molecules.  相似文献   

14.
15.
Summary The electrochemical oxidation of anodic metal (nickel or cobalt) in MeCN solutions of 1-hydroxy-2-pyridinethione (HPT) gives [Ni(PT)2], [Co(PT)2] or [Co(PT)3]. When 1,10-phenanthroline (phen) or 2,2-bipyridine (bipy) are added to the electrolytic phase the product is a complex, [Ni(PT)2L] or [Co(PT)2L] (L = bipy or phen). The i.r., u.v. and 1H- and 13C-n.m.r. spectra of the complexes are discussed.This paper was presented at the 5th Inorganic Chemistry Meeting of the Royal Spanish Chemical Society, Tossa de Mar, Girona, Spain, September 1991.  相似文献   

16.
Binding behaviors of two cucurbit[n]urils (CB[n]) hosts with the [CH3bpy(CH2)6bpyCH3]4+ (bpy = 4,4'-bipyridinium) guest were investigated by 1H NMR and MALDI-TOF-MS experiments. While the CB[6] and CB[7] form [2]pseudorotaxanes with the host located over the hexamethylene chain of the guest, only the CB[7] forms a [3]pseudorotaxane with both host molecules residing over the bipyridinium groups. The initial CB[7] host vacates the inclusion of the hexamethylene chain as a result of the electrostatic and steric repulsions that would arise in simultaneous binding of adjacent aliphatic and aromatic portions of the guest.  相似文献   

17.
The binding interactions in aqueous solution between the dicationic guest diquat (DQ(2+)) and the cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) hosts were investigated by (1)H NMR, UV/Vis, and fluorescence spectroscopy; mass spectrometry; single-crystal X-ray diffraction; and electrochemical techniques. The binding data were compared with previously reported results for the related paraquat guest (PQ(2+)). DQ(2+) was found to bind poorly (K=350 m(-1)) inside CB7 and more effectively (K=4.8 x 10(4) m(-1)) inside CB8. One-electron reduction led to increased binding affinity with both hosts (K(r)=1 x 10(4) m(-1) with CB7 and K(r)=6 x 10(5) m(-1) for CB8). While (1)H NMR spectroscopic data revealed that DQ(2+) is not fully included by CB7, the crystal structure of the CB8DQ(2+) complex-obtained from single-crystal X-ray diffraction-clearly establishes its inclusion nature. Overall, both diquat and its one-electron reduced radical cation are bound more effectively by CB8 than by CB7. In contrast to this, paraquat exhibits selectivity for CB7, but its radical cation forms a highly stable dimer inside CB8. These differences highlight the pronounced sensitivity of cucurbit[n]uril hosts to guest features such as charge, charge distribution and shape.  相似文献   

18.
Three new complexes [CuL(N3)2] (1), [CuL(SCN)2] (2), and [CoL(SCN)3] (3) (L?=?1,4,7-tribenzyl-1,4,7-triazacyclononane) have been synthesized and structurally characterized. Complex 1 crystallizes in monoclinic space group P2(1)/n with unit cell parameters a?=?14.105(7), b?=?8.999(5), c?=?21.603(11)?Å, β?=?100.470(7)°. While 2 crystallizes in triclinic space group P-1 with unit cell parameters a?=?9.6380(16), b?=?10.6993(18), c?=?15.798(3)?Å, α?=?106.636(3), γ?=?116.478(3)°. Complex 3 crystallizes in trigonal space group P–3c1 with unit cell parameters a?=?14.744(3), b?=?14.744(3), c?=?16.098(4)?Å, γ?=?120°. Elemental analysis, IR, UV-vis spectra of complexes 13 and ESR spectra of complexes 12 were also determined.  相似文献   

19.
Within density functional theory the structure of an inclusion compound based on Ni(II) dimethylglyoxymate and the macrocyclic cucurbit[8]uril nanocavitand is investigated and the thermodynamic parameters of its formation are estimated. Based on the results obtained a prediction is made about the principal possibility of the synthesis of this inclusion compound.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号