首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
《Physica A》2006,365(1):190-196
The formula for probability density functions (PDFs) has been extended to include PDF for energy dissipation rates in addition to other PDFs such as for velocity fluctuations, velocity derivatives, fluid particle accelerations, energy transfer rates, etc., and it is shown that the formula actually explains various PDFs extracted from direct numerical simulations and experiments performed in a wind tunnel. It is also shown that the formula with appropriate zooming increment corresponding to experimental situation gives a new route to obtain the scaling exponents of velocity structure function, including intermittency exponent, out of PDFs of velocity fluctuations.  相似文献   

2.
Turbulent thermal convection in half a soap bubble heated from below displays a new and surprising transition from intermittent to nonintermittent behavior for the temperature field. This transition is observed here by studying the high order moments of temperature increments. For high temperature gradients, these structure functions display Bolgiano-like scaling predicted some 60 years ago with no observable deviations. The probability distribution functions of these increments are Gaussian throughout the scaling range. These measurements are corroborated with additional velocity structure function measurements.  相似文献   

3.
High-resolution numerical simulations of stationary inverse energy cascade in two-dimensional turbulence are presented. Deviations from Gaussian behavior of velocity differences statistics are quantitatively investigated. The level of statistical convergence is pushed enough to permit reliable measurement of the asymmetries in the probability distribution functions of longitudinal increments and odd-order moments, which bring the signature of the inverse energy flux. No measurable intermittency corrections could be found in their scaling laws. The seventh order skewness increases by almost two orders of magnitude with respect to the third, thus becoming of order unity.  相似文献   

4.
We experimentally study variable–density mixing of miscible gases in an open-circuit wind tunnel using simultaneous particle image velocimetry and planar laser-induced fluorescence. Experiments of a high Atwood number (0.6) and low Atwood number (0.1) are performed to compare non-Boussinesq cases with the Boussinesq limit. The higher density gas is injected into the wind tunnel co-flow using a round jet configuration, and near-field and far-field measurements are performed to examine mixing in both momentum and buoyancy-dominated regimes. The effects of buoyancy are measurable and important in both large-scale mixing features and in turbulence quantities. The low Atwood number PDFs (probability density functions) show fast and uniform mixing. The high Atwood number PDFs of density have skewness towards the larger densities, indicating less mixing of the heavy fluid due to its inertia. The skewness in the density gradient PDFs at high Atwood number displays strong density local variations that can enhance mixing at molecular scales. Turbulent kinetic energy decreases with streamwise distance from the jet for low Atwood number but increases for high Atwood number due to larger buoyancy and density-driven shear. Over 3000 experimental realisations are used to calculate statistical characteristics of the mixing, including valuable and rarely given data such as Favre-averaged turbulent quantities: mass flux velocity, Reynolds stress, turbulent kinetic energy, and density-specific volume correlation. Buoyancy effects are observed in these quantities and the trends are compared qualitatively with direct numerical simulations.  相似文献   

5.
We present experimental results on statistics of polymer orientation angles relative to the shear plane and tumbling times in shear flow with thermal noise. The strong deviation of the probability distribution functions (PDFs) of the orientation angles from Gaussian PDFs was observed in good accord with theory. A universal exponential PDF tail for the tumbling times and its predicted scaling with Wi (that is, the dimensionless shear rate normalized by the polymer relaxation time) are also tested experimentally against numerics. The scaling relations of PDF widths for both angles as a function of Wi are verified and compared with numerics.  相似文献   

6.
Earthquakes are obviously complex phenomena associated with complicated spatiotemporal correlations, and they are generally characterized by two power laws: the Gutenberg-Richter (GR) and the Omori-Utsu laws. However, an important challenge has been to explain two apparently contrasting features: the GR and Omori-Utsu laws are scale-invariant and unaffected by energy or time scales, whereas earthquakes occasionally exhibit a characteristic energy or time scale, such as with asperity events. In this paper, three high-quality datasets on earthquakes were used to calculate the earthquake energy fluctuations at various spatiotemporal scales, and the results reveal the correlations between seismic events regardless of their critical or characteristic features. The probability density functions (PDFs) of the fluctuations exhibit evidence of another scaling that behaves as a q-Gaussian rather than random process. The scaling behaviors are observed for scales spanning three orders of magnitude. Considering the spatial heterogeneities in a real earthquake fault, we propose an inhomogeneous Olami-Feder-Christensen (OFC) model to describe the statistical properties of real earthquakes. The numerical simulations show that the inhomogeneous OFC model shares the same statistical properties with real earthquakes.  相似文献   

7.
The scaling behavior of the 1998-2009 seismicity in Guerrero, southern Mexico, was studied by means of the detrended fluctuation analysis (DFA). We found that inter-seismic periods are correlated with a transition in the scaling behavior at about 200 seismic events. Correlations are relatively weak for small time scales. However, for large time scales, correlations are associated with a 1/f fractional process, indicating that the seismicity pattern emerges from a self-organized critical state. Temporal variations of the scaling exponent along years computed from the DFA indicate the presence of a quasi-biennial cycle in the seismicity correlations. This cyclic behavior was apparently triggered by the large 2001-2002 slow slip event in the Guerrero seismic gap. Besides, the significant seismic events (Mw>5) originate, on the average, at deeper regions in each cycle.  相似文献   

8.
9.
Fei Ren  Gao-Feng Gu  Wei-Xing Zhou 《Physica A》2009,388(22):4787-4796
We perform return interval analysis of 1-min realized volatility defined by the sum of absolute high-frequency intraday returns for the Shanghai Stock Exchange Composite Index (SSEC) and 22 constituent stocks of SSEC. The scaling behavior and memory effect of the return intervals between successive realized volatilities above a certain threshold q are carefully investigated. In comparison with the volatility defined by the closest tick prices to the minute marks, the return interval distribution for the realized volatility shows a better scaling behavior since 20 stocks (out of 22 stocks) and the SSEC pass the Kolmogorov-Smirnov (KS) test and exhibit scaling behaviors, among which the scaling function for 8 stocks could be approximated well by a stretched exponential distribution revealed by the KS goodness-of-fit test under the significance level of 5%. The improved scaling behavior is further confirmed by the relation between the fitted exponent γ and the threshold q. In addition, the similarity of the return interval distributions for different stocks is also observed for the realized volatility. The investigation of the conditional probability distribution and the detrended fluctuation analysis (DFA) show that both short-term and long-term memory exists in the return intervals of realized volatility.  相似文献   

10.
The stochastic transport of particles in a disordered two-dimensional layered medium, driven by correlated y-dependent random velocity fields is usually referred to as random shear model. This model exhibits a superdiffusive behavior in the x direction ascribable to the statistical properties of the disorder advection field. By introducing layered random amplitude with a power-law discrete spectrum, the analytical expressions for the space and time velocity correlation functions, together with those of the position moments, are derived by means of two distinct averaging procedures. In the case of quenched disorder, the average is performed over an ensemble of uniformly spaced initial conditions: albeit the strong sample-to-sample fluctuations, and universality appears in the time scaling of the even moments. Such universality is exhibited in the scaling of the moments averaged over the disorder configurations. The non-universal scaling form of the no-disorder symmetric or asymmetric advection fields is also derived.  相似文献   

11.
We present molecular dynamics simulations of the beginning of a silo discharge by gravity. The evolution of the velocity profile and the probability density functions for the displacements of the grains are obtained. These PDFs reveal non-gaussian statistics and superdiffusive behavior similar to that observed in some experiments. We propose an analytical expression for the PDFs and an explanation for its dynamical origin in connection with the ideas of the “spot" model and non-extensive thermodynamics.  相似文献   

12.
We analyze particle velocity fluctuations in a simulated granular system subjected to homogeneous quasistatic shearing. We show that these fluctuations share the following scaling characteristics of fluid turbulence in spite of their different physical origins: (i) scale-dependent probability distribution with non-Gaussian broadening at small time scales; (ii) spatial power spectrum of the velocity field showing a power-law decay, reflecting long-range correlations and the self-affine nature of the fluctuations; and (iii) superdiffusion of particles with respect to the mean background flow.  相似文献   

13.
Using results of a direct numerical simulation (DNS) of 3D turbulence we show that the observed generalized scaling (i.e. scaling moments versus moments of different orders) is consistent with a lognormal-like distribution of turbulent energy dissipation fluctuations with moderate amplitudes for all space scales available in this DNS (beginning from the molecular viscosity scale up to largest ones). Local multifractal thermodynamics has been developed to interpret the data obtained using the generalized scaling, and a new interval of space scales with inverse cascade of generalized energy has been found between dissipative and inertial intervals of scales for sufficiently large values of the Reynolds number. Received 21 July 2000  相似文献   

14.
Two cellular automata models with directed mass flow and internal time scales are studied by numerical simulations. Relaxation rules are a combination of probabilistic critical height (probability of toppling p) and deterministic critical slope processes with internal correlation time tc equal to the avalanche lifetime, in model A, and ,in model B. In both cases nonuniversal scaling properties of avalanche distributions are found for , where is related to directed percolation threshold in d=3. Distributions of avalanche durations for are studied in detail, exhibiting multifractal scaling behavior in model A, and finite size scaling behavior in model B, and scaling exponents are determined as a function of p. At a phase transition to noncritical steady state occurs. Due to difference in the relaxation mechanisms, avalanche statistics at approaches the parity conserving universality class in model A, and the mean-field universality class in model B. We also estimate roughness exponent at the transition. Received: 29 May 1998 / Revised: 8 September 1998 / Accepted: 10 September 1998  相似文献   

15.
We report measurements of the curvature of Lagrangian trajectories in an intensely turbulent laboratory water flow measured with a high-speed particle-tracking system. The probability density function (PDF) of the instantaneous curvature is shown to have robust power-law tails. We propose a model for the instantaneous curvature PDF, assuming that the acceleration and velocity are uncorrelated Gaussian random variables, and show that our model reproduces the tails of our measured PDFs. We also predict the scaling of the most probable vorticity magnitude in turbulence, assuming Heisenberg-Yaglom scaling. Finally, we average the curvature along trajectories and show that, by removing the effects of large-scale flow reversals, the filtered curvature reveals the turbulent features.  相似文献   

16.
The velocity increments statistic in various turbulent flows is analysed through the hypothesis that different scales are linked by a multiplicative process, of which multiplier is infinitely divisible. This generalisation of the Kolmogorov-Obukhov theory is compatible with the finite Reynolds number value of real flows, thus ensuring safe extrapolation to the infinite Reynolds limit. It exhibits a estimator universally depending on the Reynolds number of the flow, with the same law either for Direct Numerical Simulations or experiments, both for transverse and longitudinal increments. As an application of this result, the inverse dependence is used to define an unbiased value for a Large Eddy Simulation from the resolved scales velocity statistics. However, the exact shape of the multiplicative process, though independent of the Reynolds number for a given experimental setup, is found to depend significantly on this setup and on the nature of the increment, longitudinal or transverse. The asymmetry of longitudinal velocity increments probability density functions exhibits similarly a dependence with the experimental setup, but also systematically depends on the Reynolds number. Received 7 January 2000 and Received in final form 17 March 2000  相似文献   

17.
We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy’s law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in heterogeneous natural and engineered porous materials.  相似文献   

18.
Truncated Levy flights with correlated fluctuations of the variance (heteroskedasticity) are considered. A stylized model is introduced, in which the variance fluctuates between two possible values following a Markov chain process. Analogously to conventional truncated Levy flights with fixed variance, the central part of the probability distribution function of the increments at short time scales is found to be close to a Levy distribution. What makes these processes interesting is the fact that the crossover to the Gaussian regime may occur for times considerably larger than for uncorrelated (or no) variance fluctuations. Processes of this type may find direct application in the modeling of some economic time series, in which Levy scaling and heteroskedasticity are known to coexist.  相似文献   

19.
The statistical properties of the Hang Seng index in the Hong Kong stock market are analyzed. The data include minute by minute records of the Hang Seng index from January 3, 1994 to May 28, 1997. The probability distribution functions of index returns for the time scales from 1 minute to 128 minutes are given. The results show that the nature of the stochastic process underlying the time series of the returns of Hang Seng index cannot be described by the normal distribution. It is more reasonable to model it by a truncated Lévy distribution with an exponential fall-off in its tails. The scaling of the maximium value of the probability distribution is studied. Results show that the data are consistent with scaling of a Lévy distribution. It is observed that in the tail of the distribution, the fall-off deviates from that of a Lévy stable process and is approximately exponential, especially after removing daily trading pattern from the data. The daily pattern thus affects strongly the analysis of the asymptotic behavior and scaling of fluctuation distributions. Received 9 August 2000 and Received in final form 28 August 2000  相似文献   

20.
In this paper, we focus on the critical periods in the economy that are characterized by unusual and large fluctuations in macroeconomic indicators, like those measuring inflation and unemployment. We analyze U.S. data for 70 years from 1948 until 2018. To capture their fluctuation essence, we concentrate on the non-Gaussianity of their distributions. We investigate how the non-Gaussianity of these variables affects the coupling structure of them. We distinguish “regular” from “rare” events, in calculating the correlation coefficient, emphasizing that both cases might lead to a different response of the economy. Through the “multifractal random wall” model, one can see that the non-Gaussianity depends on time scales. The non-Gaussianity of unemployment is noticeable only for periods shorter than one year; for longer periods, the fluctuation distribution tends to a Gaussian behavior. In contrast, the non-Gaussianities of inflation fluctuations persist for all time scales. We observe through the “bivariate multifractal random walk” that despite the inflation features, the non-Gaussianity of the coupled structure is finite for scales less than one year, drops for periods larger than one year, and becomes small for scales greater than two years. This means that the footprint of the monetary policies intentionally influencing the inflation and unemployment couple is observed only for time horizons smaller than two years. Finally, to improve some understanding of the effect of rare events, we calculate high moments of the variables’ increments for various q orders and various time scales. The results show that coupling with high moments sharply increases during crises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号