首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scale-free degree distribution and community structure are two significant properties shared by numerous complex networks. In this paper, we investigate the impact of these properties on a stochastic SIR epidemic which incorporates the stochastic nature of epidemic spreading. A two-type branching process is employed to approximate the early stage of epidemic spreading. The basic reproduction number R0R0 is obtained. And the influences of scale-free property and community structure on R0R0 are analyzed by numerical simulations.  相似文献   

2.
In this paper, we discuss a multigroup SIR model with stochastic perturbation. We deduce the globally asymptotic stability of the disease-free equilibrium when R0≤1, which means the disease will die out. On the other hand, when R0>1, we derive the disease will prevail, which is measured through the difference between the solution and the endemic equilibrium of the deterministic model in time average. Furthermore, we prove the system is persistent in the mean which also reflects the disease will prevail. The key to our analysis is choosing appropriate Lyapunov functions. Finally, we illustrate the dynamic behavior of the model with n=2 and their approximations via a range of numerical experiments.  相似文献   

3.
A accurate and fast Monte Carlo algorithm is proposed for solving the Ginzburg-Landau equation with multiplicative colored noise. The stable cases of solution for choosing time steps and trajectory numbers are discussed.  相似文献   

4.
自适应网络中病毒传播的稳定性和分岔行为研究   总被引:2,自引:0,他引:2       下载免费PDF全文
鲁延玲  蒋国平  宋玉蓉 《物理学报》2013,62(13):130202-130202
自适应复杂网络是以节点状态与拓扑结构之间存在反馈回路为特征的网络. 针对自适应网络病毒传播模型, 利用非线性微分动力学系统研究病毒传播行为; 通过分析非线性系统对应雅可比矩阵的特征方程, 研究其平衡点的局部稳定性和分岔行为, 并推导出各种分岔点的计算公式. 研究表明, 当病毒传播阈值小于病毒存在阈值, 即R00c时, 网络中病毒逐渐消除, 系统的无病毒平衡点是局部渐近稳定的; R0c0<1时, 网络出现滞后分岔, 产生双稳态现象, 系统存在稳定的无病毒平衡点、较大稳定的地方病平衡点和较小不稳定的地方病平衡点; R0>1时, 网络中病毒持续存在, 系统唯一的地方病平衡点是局部渐近稳定的. 研究发现, 系统先后出现了鞍结分岔、跨临界分岔、霍普夫分岔等分岔行为. 最后通过数值仿真验证所得结论的正确性. 关键词: 自适应网络 稳定性 分岔 基本再生数  相似文献   

5.
An SIS network model incorporating the influence of media coverage on transmission rate is formulated and analyzed. We calculate the basic reproduction number R0R0 by utilizing the local stability of the disease-free equilibrium. Our results show that the disease-free equilibrium is globally asymptotically stable and that the disease dies out if R0R0 is below 1; otherwise, the disease will persist and converge to a unique positive stationary state. This result may suggest effective control strategies to prevent disease through media coverage and education activities in finite-size scale-free networks. Numerical simulations are also performed to illustrate our results and to give more insights into the dynamical process.  相似文献   

6.
In this paper, we discuss the dynamics of a stochastic SIS epidemic model with vaccination. When the noise is large, the infective decays exponentially to zero regardless of the magnitude of R0R0. When the noise is small, sufficient conditions for extinction exponentially and persistence in the mean are established. The results are illustrated by computer simulations.  相似文献   

7.
刘茂省  阮炯 《中国物理 B》2009,18(12):5111-5116
In this paper, a stochastic SIS epidemic model on homogeneous networks is considered. The largest Lyapunov exponent is calculated by Oseledec multiplicative ergodic theory, and the stability condition is determined by the largest Lyapunov exponent. The probability density function for the proportion of infected individuals is found explicitly, and the stochastic bifurcation is analysed by a probability density function. In particular, the new basic reproductive number R*, that governs whether an epidemic with few initial infections can become an endemic or not, is determined by noise intensity. In the homogeneous networks, despite of the basic productive number R0>1, the epidemic will die out as long as noise intensity satisfies a certain condition.  相似文献   

8.
This paper first proves the existence of a unique mild solution to the stochastic derivative Ginzburg-Landau equation. The fixed point theorem for the corresponding truncated equation is used as the main tool. Since we restrict our study to the one-dimensional case, it is not necessary to introduce another Banach space and thus the estimates of the stochastic convolutions in the Banach space are avoided. Secondly, we also consider large deviations for the stochastic derivative Ginzburg-Landau equation perturbed by a small noise. Since the underlying space considered is Polish, using the weak convergence approach, we establish a large deviations principle by proving a Laplace principle.  相似文献   

9.
An e-epidemic model of malicious codes in the computer network through vertical transmission is formulated. We have observed that if the basic reproduction number is less than unity, the infected proportion of computer nodes disappear and malicious codes die out and also the malicious codes-free equilibrium is globally asymptotically stable which leads to its eradication. Effect of anti-virus software on the removal of the malicious codes from the computer network is critically analyzed. Analysis and simulation results show some managerial insights that are helpful for the practice of anti-virus in information sharing networks.  相似文献   

10.
A computational methodology is developed to address the solution of high-dimensional stochastic problems. It utilizes high-dimensional model representation (HDMR) technique in the stochastic space to represent the model output as a finite hierarchical correlated function expansion in terms of the stochastic inputs starting from lower-order to higher-order component functions. HDMR is efficient at capturing the high-dimensional input–output relationship such that the behavior for many physical systems can be modeled to good accuracy only by the first few lower-order terms. An adaptive version of HDMR is also developed to automatically detect the important dimensions and construct higher-order terms using only the important dimensions. The newly developed adaptive sparse grid collocation (ASGC) method is incorporated into HDMR to solve the resulting sub-problems. By integrating HDMR and ASGC, it is computationally possible to construct a low-dimensional stochastic reduced-order model of the high-dimensional stochastic problem and easily perform various statistic analysis on the output. Several numerical examples involving elementary mathematical functions and fluid mechanics problems are considered to illustrate the proposed method. The cases examined show that the method provides accurate results for stochastic dimensionality as high as 500 even with large-input variability. The efficiency of the proposed method is examined by comparing with Monte Carlo (MC) simulation.  相似文献   

11.
王超  刘骋远  胡元萍  刘志宏  马建峰 《物理学报》2014,63(18):180501-180501
社交网络已成为当前最重要的信息传播媒体之一,因此有必要研究信息在社交网络上的传播规律.本文探索了包含遏制机制和遗忘机制的信息传播机理,提出了信息传播的模型,给出了信息传播的规则,建立了相应的平均场方程,计算了平衡点和基本再生数R_0,并从理论上证明了平衡点的渐进稳定性.仿真实验分析了遏制机制、遗忘机制等因素对信息传播过程的影响,并验证了所得结论的正确性.  相似文献   

12.
We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number R0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if R0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If R0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of R0, when the stochastic system obeys some conditions and R0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable.Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.  相似文献   

13.
We combined an epidemic model with an objective function to minimize the weighted sum of people with excess weight and the cost of a medication and surgical intervention in the population. The epidemic model is consisted of ordinary differential equations to describe three subpopulation groups based on weight. We introduced an intervention using medication and surgery to deal with excess weight. An objective function is constructed taking into consideration the cost of the intervention as well as the weight distribution of the population. Using empirical data, we show that fixed participation rate reduces the size of obese population but increases the size for overweight. An optimal participation rate exists and decreases with respect to time. Both theoretical analysis and empirical example confirm the existence of an optimal participation rate, u?. Under u?, the weighted sum of overweight (S) and obese (O) population as well as the cost of the program is minimized. This article highlights the existence of an optimal participation rate that minimizes the number of people with excess weight and the cost of the intervention. The time-varying optimal participation rate could contribute to designing future public health interventions of excess weight.  相似文献   

14.
Using a simple matrix method, we have obtained exact second-order equilibrium moments for a linearly damped harmonic oscillator with a fluctuating frequency (t) and driven by a fluctuating forcef(t). We have assumed each of the fluctuating quantities to be delta-correlated. We demonstrate that the final answers are identical whetherf(t) and (t) are statistically independent or delta-correlated. We have also established the region of parameter space in which the oscillator is energetically stable. The results are shown to be completely determined by the coefficients of the first and second cumulants of the fluctuations.Supported in part by the Office of Naval Research, NSF Grant # CHE 78-21460, and by a grant from Charles and Renée Taubman.  相似文献   

15.
In this paper, we propose and study an SIS epidemic model with multiple transmission routes on heterogeneous networks. We focus on the dynamical evolution of the prevalence. Through mathematical analysis, we obtain the basic reproduction number R0R0 by investigating the local stability of the disease-free equilibrium and also investigate the effects of various immunization schemes on disease spread. We further obtain that the disease will die out independent of the initial infections if the basic reproduction number is less than one, otherwise if the basic reproduction number is larger than one, the system converges to a unique endemic equilibrium, which is globally stable and thus the disease persists in the population. Our theoretical results are conformed by a series of numerical simulations and suggest a promising way for the control of infectious diseases with multiple routes.  相似文献   

16.
In this Letter, an approach to estimating a nonlinear deterministic model is presented. We introduce a stochastic model with extremely small variances so that the deterministic and stochastic models are essentially indistinguishable from each other. This point is explained in the Letter. The estimation is then carried out using stochastic optimization based on Markov chain Monte Carlo (MCMC) methods.  相似文献   

17.
Stochastic analysis of random heterogeneous media provides useful information only if realistic input models of the material property variations are used. These input models are often constructed from a set of experimental samples of the underlying random field. To this end, the Karhunen–Loève (K–L) expansion, also known as principal component analysis (PCA), is the most popular model reduction method due to its uniform mean-square convergence. However, it only projects the samples onto an optimal linear subspace, which results in an unreasonable representation of the original data if they are non-linearly related to each other. In other words, it only preserves the first-order (mean) and second-order statistics (covariance) of a random field, which is insufficient for reproducing complex structures. This paper applies kernel principal component analysis (KPCA) to construct a reduced-order stochastic input model for the material property variation in heterogeneous media. KPCA can be considered as a nonlinear version of PCA. Through use of kernel functions, KPCA further enables the preservation of higher-order statistics of the random field, instead of just two-point statistics as in the standard Karhunen–Loève (K–L) expansion. Thus, this method can model non-Gaussian, non-stationary random fields. In this work, we also propose a new approach to solve the pre-image problem involved in KPCA. In addition, polynomial chaos (PC) expansion is used to represent the random coefficients in KPCA which provides a parametric stochastic input model. Thus, realizations, which are statistically consistent with the experimental data, can be generated in an efficient way. We showcase the methodology by constructing a low-dimensional stochastic input model to represent channelized permeability in porous media.  相似文献   

18.
In this paper, we focus on investigating the steady-state shift behaviors and the stochastic resonance phenomenon (SR) for a biological insect population system with a multiplicative periodic signal caused by the terms of the colored multiplicative and additive noises. Our research results imply that the multiplicative noise and the self-correlation of the additive noise can weaken the stability of the biological system and restrain the growth of the insect population, while the additive noise and the self-correlation time of the multiplicative noise can strengthen the stability of the insect system and facilitate the biological population to breed. As regards to the phenomenon of the SR evoked by a multiplicative periodic signal, noise terms and their correlation times, the computed results show that the additive noise intensity M and the self- correlation time τ1 of the multiplicative noise can both improve the SR effect. Inversely, the multiplicative noise intensity Q and the self-correlation time τ2 of the additive noise can suppress together the SR phenomenon. Whereas, it should be pointed out that in the SNR-Q and SNR-M plots, the two self-correlation times can both motivate a resonant peak, but not change the peak value of the SNR no matter how the two noise correlation times vary.  相似文献   

19.
With the help of recent results in the mathematical theory of master equations, we present a rigorous derivation of the stochastic Glauber dynamics of Ising models from Hamiltonian quantum mechanics. A thermal bath is explicitly constructed and, as an illustration, the dynamics of the Ising-Weiss model is analyzed in the thermodynamic limit. We thus obtain an example of a nonequilibrium statistical mechanical system for which a link without mathematical gap can be established from microscopic quantum mechanics to a macroscopic irreversible thermodynamic process.  相似文献   

20.
In this Letter, we firstly propose an epidemic network model incorporating two controls which are vaccination and treatment. For the constant controls, by using Lyapunov function, global stability of the disease-free equilibrium and the endemic equilibrium of the model is investigated. For the non-constant controls, by using the optimal control strategy, we discuss an optimal strategy to minimize the total number of the infected and the cost associated with vaccination and treatment. Table 1 and Figs. 1–5 are presented to show the global stability and the efficiency of this optimal control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号