首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We present a comparative study of the application of a recently introduced heuristic algorithm to the optimization of transport on three major types of complex networks. The algorithm balances network traffic iteratively by minimizing the maximum node betweenness with as little path lengthening as possible. We show that by using this optimal routing, a network can sustain significantly higher traffic without jamming than in the case of shortest path routing. A formula is proved and tested with numerical simulation that allows quick computation of the average number of hops along the path and of the average travel times once the betweennesses of the nodes are computed. Using this formula, we show that routing optimization preserves the small-world character exhibited by networks under shortest path routing, and that it significantly reduces the average travel time on congested networks with only a negligible increase in the average travel time at low loads. Finally, we study the correlation between the weights of the links in the case of optimal routing and the betweennesses of the nodes connected by them.  相似文献   

2.
We present a comparative network-theoretic analysis of the two largest global transportation networks: the worldwide air-transportation network (WAN) and the global cargo-ship network (GCSN). We show that both networks exhibit surprising statistical similarities despite significant differences in topology and connectivity. Both networks exhibit a discontinuity in node and link betweenness distributions which implies that these networks naturally segregate into two different classes of nodes and links. We introduce a technique based on effective distances, shortest paths and shortest path trees for strongly weighted symmetric networks and show that in a shortest path tree representation the most significant features of both networks can be readily seen. We show that effective shortest path distance, unlike conventional geographic distance measures, strongly correlates with node centrality measures. Using the new technique we show that network resilience can be investigated more precisely than with contemporary techniques that are based on percolation theory. We extract a functional relationship between node characteristics and resilience to network disruption. Finally we discuss the results, their implications and conclude that dynamic processes that evolve on both networks are expected to share universal dynamic characteristics.  相似文献   

3.
Daniel O. Cajueiro 《Physica A》2010,389(9):1945-1703
In this paper, we explore how the approach of optimal navigation (Cajueiro (2009) [33]) can be used to evaluate the centrality of a node and to characterize its role in a network. Using the subway network of Boston and the London rapid transit rail as proxies for complex networks, we show that the centrality measures inherited from the approach of optimal navigation may be considered if one desires to evaluate the centrality of the nodes using other pieces of information beyond the geometric properties of the network. Furthermore, evaluating the correlations between these inherited measures and classical measures of centralities such as the degree of a node and the characteristic path length of a node, we have found two classes of results. While for the London rapid transit rail, these inherited measures can be easily explained by these classical measures of centrality, for the Boston underground transportation system we have found nontrivial results.  相似文献   

4.
武喜萍  杨红雨  韩松臣 《物理学报》2016,65(14):140203-140203
为提高空管技术保障系统应对突发事件的能力,本文以空管技术保障系统导航、通信、监视设备覆盖的航路结构为基础,构建系统对应的空间网络模型.提出从灵活性、鲁棒性、高效性三个方面度量空管技术保障系统网络特性,对北京、上海、广州、昆明、沈阳、兰州飞行情报区的空管技术保障系统网络的平均度、度分布、度-度相关性、聚集系数、平均路径长度、直径等进行分析.分析结果显示,各飞行情报区空管技术保障系统的平均聚集系数在0.25—0.39之间,网络聚集程度偏低;网络平均路径长度为3.4,表现出小世界网络特征;度值3时服从幂律分布,度-度分布不表现出正相关或负相关.对网络进行基于度优先的和随机的抗毁性测度,空管技术保障系统网络抗毁性较差,网络的可靠性由少数核心节点决定,应对核心节点进行目标免疫,提高网络的抗毁性.这些规律为空管技术保障系统能力提升、新建扩建提供理论依据,对降低突发事件对空管系统保障能力的影响,保障空中交通持续安全具有现实意义.  相似文献   

5.
凌翔  胡茂彬  龙建成  丁建勋  石琴 《中国物理 B》2013,22(1):18904-018904
In this paper, an optimal resource allocation strategy is proposed to enhance traffic dynamics in complex networks. The network resources are the total node packet-delivering capacity and the total link bandwidth. An analytical method is developed to estimate the overall network capacity by using the concept of efficient betweenness (ratio of algorithmic betweenness and local processing capacity). Three network structures (scale-free, small-world, and random networks) and two typical routing protocols (shortest path protocol and efficient routing protocol) are adopted to demonstrate the performance of the proposed strategy. Our results show that the network capacity is reversely proportional to the average path length for a particular routing protocol and the shortest path protocol can achieve the largest network capacity when the proposed resource allocation strategy is adopted.  相似文献   

6.
Betweenness measures provide quantitative tools to pick out fine details from the massive amount of interaction data that is available from large complex networks. They allow us to study the extent to which a node takes part when information is passed around the network. Nodes with high betweenness may be regarded as key players that have a highly active role. At one extreme, betweenness has been defined by considering information passing only through the shortest paths between pairs of nodes. At the other extreme, an alternative type of betweenness has been defined by considering all possible walks of any length. In this work, we propose a betweenness measure that lies between these two opposing viewpoints. We allow information to pass through all possible routes, but introduce a scaling so that longer walks carry less importance. This new definition shares a similar philosophy to that of communicability for pairs of nodes in a network, which was introduced by Estrada and Hatano [E. Estrada, N. Hatano, Phys. Rev. E 77 (2008) 036111]. Having defined this new communicability betweenness measure, we show that it can be characterized neatly in terms of the exponential of the adjacency matrix. We also show that this measure is closely related to a Fréchet derivative of the matrix exponential. This allows us to conclude that it also describes network sensitivity when the edges of a given node are subject to infinitesimally small perturbations. Using illustrative synthetic and real life networks, we show that the new betweenness measure behaves differently to existing versions, and in particular we show that it recovers meaningful biological information from a protein-protein interaction network.  相似文献   

7.
The most important function of a network is for transporting traffic. Due to the low traffic capacity of network systems under the global shortest path routing, plenty of heuristic routing strategies are emerging. In this paper, we propose a heuristic routing strategy called the incremental routing algorithm to improve the traffic capacity of complex networks. We divide the routing process into NN(the network size) steps and, at each step, we heuristically calculate all the routes for one source node considering both the dynamic efficient betweenness centrality and node degree information. We do extensive simulations on scale-free networks to confirm the effectiveness of the proposed incremental routing strategy. The simulation results show that the traffic capacity has been enhanced by a substantial factor at the expense of a slight lengthening in the average path.  相似文献   

8.
Futures trading is the core of futures business, and it is considered as one of the typical complex systems. To investigate the complexity of futures trading, we employ the analytical method of complex networks. First, we use real trading records from the Shanghai Futures Exchange to construct futures trading networks, in which nodes are trading participants, and two nodes have a common edge if the two corresponding investors appear simultaneously in at least one trading record as a purchaser and a seller, respectively. Then, we conduct a comprehensive statistical analysis on the constructed futures trading networks. Empirical results show that the futures trading networks exhibit features such as scale-free behavior with interesting odd-even-degree divergence in low-degree regions, small-world effect, hierarchical organization, power-law betweenness distribution, disassortative mixing, and shrinkage of both the average path length and the diameter as network size increases. To the best of our knowledge, this is the first work that uses real data to study futures trading networks, and we argue that the research results can shed light on the nature of real futures business.  相似文献   

9.
阮逸润  老松杨  王竣德  白亮  侯绿林 《物理学报》2017,66(20):208901-208901
评价网络中节点的信息传播影响力对于理解网络结构与网络功能具有重要意义.目前,许多基于最短路径的指标,如接近中心性、介数中心性以及半局部(SP)指标等相继用于评价节点传播影响力.最短路径表示节点间信息传播途径始终选择最优方式,然而实际上网络间的信息传播过程更类似于随机游走,信息的传播途径可以是节点间的任一可达路径,在集聚系数高的网络中,节点的局部高聚簇性有利于信息的有效扩散,若只考虑信息按最优传播方式即最短路径传播,则会低估节点信息传播的能力,从而降低节点影响力的排序精度.综合考虑节点与三步内邻居间的有效可达路径以及信息传播率,提出了一种SP指标的改进算法,即ASP算法.在多个经典的实际网络和人工网络上利用SIR模型对传播过程进行仿真,结果表明ASP指标与度指标、核数指标、接近中心性指标、介数中心性指标以及SP指标相比,可以更精确地对节点传播影响力进行排序.  相似文献   

10.
苑卫国  刘云  程军军  熊菲 《物理学报》2013,62(3):38901-038901
根据新浪微博的实际数据, 建立了两个基于双向“关注”的用户关系网络, 通过分析网络拓扑统计特征, 发现二者均具有小世界、无标度特征. 通过对节点度、紧密度、介数和k-core 四个网络中心性指标进行实证分析, 发现节点度服从分段幂率分布; 介数相比其他中心性指标差异性最为显著; 两个网络均具有明显的层次性, 但不是所有度值大的节点核数也大; 全局范围内各中心性指标之间存在着较强的相关性, 但在度值较大的节点群这种相关性明显减弱. 此外, 借助基于传染病动力学的SIR信息传播模型来分析四种指标在刻画节点传播能力方面的差异性, 仿真结果表明, 选择具有不同中心性指标的初始传播节点, 对信息传播速度和范围均具有不同影响; 紧密度和k-core较其他指标可以更加准确地描述节点在信息传播中所处的网络核心位置, 这有助于识别信息传播拓扑网络中的关键节点.  相似文献   

11.
动态随机最短路径算法研究   总被引:4,自引:0,他引:4       下载免费PDF全文
张水舰  刘学军  杨洋 《物理学报》2012,61(16):160201-160201
静态最短路径问题已经得到很好解决, 然而现实中的网络大多具有动态性和随机性. 网络弧和节点的状态及耗费不仅具有不确定性且相互关联, 弧和节点的耗费都服从一定的概率分布, 因此把最短路径问题看作是一个动态随机优化问题更具有一般性. 文中分析了网络弧和节点的动态随机特性及其相互关系, 定义了动态随机最短路径; 给出了动态随机最短路径优化数学模型, 提出了一种动态随机最短路径遗传算法; 针对网络的拓扑特性设计了高效合理的遗传算子. 实验结果表明, 文中提出的模型和算法能有效地解决动态随机最短路径问题, 可以运用到交通、通信等网络的网络流随机优化问题中.  相似文献   

12.
With the increasing popularity of rail transit and the increasing number of light rail trips, the vulnerability of rail transit has become increasingly prominent. Once the rail transit is maliciously broken or the light rail station is repaired, it may lead to large-scale congestion or even the paralysis of the whole rail transit network. Hence, it is particularly important to identify the influential nodes in the rail transit network. Existing identifying methods considered a single scenario on either betweenness centrality (BC) or closeness centrality. In this paper, we propose a hybrid topology structure (HTS) method to identify the critical nodes based on complex network theory. Our proposed method comprehensively considers the topology of the node itself, the topology of neighbor nodes, and the global influence of the node itself. Finally, the susceptible–infected–recovered (SIR) model, the monotonicity (M), the distinct metric (DM), the Jaccard similarity coefficient (JSC), and the Kendall correlation coefficient (KC) are utilized to evaluate the proposed method over the six real-world networks. Experimental results confirm that the proposed method achieves higher performance than existing methods in identifying networks.  相似文献   

13.
This paper introduces three novel centrality measures based on the nodes’ role in the operation of a joint task, i.e., their position in a criminal network value chain. For this, we consider networks where nodes have attributes describing their “capabilities” or “colors”, i.e., the possible roles they may play in a value chain. A value chain here is understood as a series of tasks to be performed in a specific order, each requiring a specific capability. The first centrality notion measures how many value chain instances a given node participates in. The other two assess the costs of replacing a node in the value chain in case the given node is no longer available to perform the task. The first of them considers the direct distance (shortest path length) between the node in question and its nearest replacement, while the second evaluates the actual replacement process, assuming that preceding and following nodes in the network should each be able to find and contact the replacement. In this report, we demonstrate the properties of the new centrality measures using a few toy examples and compare them to classic centralities, such as betweenness, closeness and degree centrality. We also apply the new measures to randomly colored empirical networks. We find that the newly introduced centralities differ sufficiently from the classic measures, pointing towards different aspects of the network. Our results also pinpoint the difference between having a replacement node in the network and being able to find one. This is the reason why “introduction distance” often has a noticeable correlation with betweenness. Our studies show that projecting value chains over networks may significantly alter the nodes’ perceived importance. These insights might have important implications for the way law enforcement or intelligence agencies look at the effectiveness of dark network disruption strategies over time.  相似文献   

14.
Routing and path selection are crucial for many communication and logistic applications. We study the interaction between nodes and packets and establish a simple model for describing the attraction of the node to the packet in transmission process by using the gravitational field theory, considering the real and potential congestion of the nodes. On the basis of this model, we propose a gravitational field routing strategy that considers the attractions of all of the nodes on the travel path to the packet. In order to illustrate the efficiency of proposed routing algorithm, we introduce the order parameter to measure the throughput of the network by the critical value of phase transition from a free flow phase to a congested phase,and study the distribution of betweenness centrality and traffic jam. Simulations show that, compared with the shortest path routing strategy, the gravitational field routing strategy considerably enhances the throughput of the network and balances the traffic load, and nearly all of the nodes are used efficiently.  相似文献   

15.
In this paper we present weighted Koch networks based on classic Koch networks. A new method is used to determine the average receiving time (ART), whose key step is to write the sum of mean first-passage times (MFPTs) for all nodes to absorption at the trap located at a hub node as a recursive relation. We show that the ART exhibits a sublinear or linear dependence on network order. Thus, the weighted Koch networks are more efficient than classic Koch networks in receiving information. Moreover, average weighted shortest path (AWSP) is calculated. In the infinite network order limit, the AWSP depends on the scaling factor. The weighted Koch network grows unbounded but with the logarithm of the network size, while the weighted shortest paths stay bounded.  相似文献   

16.
Robustness analysis of static routing on networks   总被引:1,自引:0,他引:1  
Robustness is one of the crucial properties that needs to be considered in the design of routing strategies on networks. We study the robustness of three typical routing strategies, which are the SP (shortest path), EP (efficient path), and OP (optimal path) strategies, by simulating several different kinds of attacks including random attacks, target attacks and cascading failures on scale-free networks. Results of the average path length, betweenness centrality, network capacity, etc., demonstrate that the EP strategy is more robust than the other two, and the OP strategy is more reliable than the SP strategy in general. However, on the power-grid network, the OP strategy is more resistant against cascading failures than the EP and SP strategies.  相似文献   

17.
In many real-life networks, both the scale-free distribution of degree and small-world behavior are important features. There are many random or deterministic models of networks to simulate these features separately. However, there are few models that combine the scale-free effect and small-world behavior, especially in terms of deterministic versions. What is more, all the existing deterministic algorithms running in the iterative mode generate networks with only several discrete numbers of nodes. This contradicts the purpose of creating a deterministic network model on which we can simulate some dynamical processes as widely as possible. According to these facts, this paper proposes a deterministic network generation algorithm, which can not only generate deterministic networks following a scale-free distribution of degree and small-world behavior, but also produce networks with arbitrary number of nodes. Our scheme is based on a complete binary tree, and each newly generated leaf node is further linked to its full brother and one of its direct ancestors. Analytical computation and simulation results show that the average degree of such a proposed network is less than 5, the average clustering coefficient is high (larger than 0.5, even for a network of size 2 million) and the average shortest path length increases much more slowly than logarithmic growth for the majority of small-world network models.  相似文献   

18.
We study the stability of network communication after removal of a fraction q=1-p of links under the assumption that communication is effective only if the shortest path between nodes i and j after removal is shorter than al(ij)(a> or =1) where l(ij) is the shortest path before removal. For a large class of networks, we find analytically and numerically a new percolation transition at p(c)=(kappa(0)-1)((1-a)/a), where kappa(0) [triple bond] / and k is the node degree. Above p(c), order N nodes can communicate within the limited path length al(ij), while below p(c), N(delta) (delta<1) nodes can communicate. We expect our results to influence network design, routing algorithms, and immunization strategies, where short paths are most relevant.  相似文献   

19.
We investigate a new efficient packet routing strategy which mitigates traffic congestion on complex networks. In order to avoid congestion, we minimize the maximum betweenness, which is a measure for concentration of routing paths passing through a node in the network. Danila et al. propose a packet routing strategy in which, instead of shortest paths, they used efficient paths, which are the paths with the minimum total summations of weights assigned to nodes in the respective paths. They use a heuristic algorithm in which the weights are updated step by step by using the information of betweenness of each node in every step and the respective total summations of weights for paths through the nodes with large degrees become comparatively large. Thus passage through such nodes, where congestion almost occurs, is likely to be avoided in their algorithm. The convergence time by their algorithm is, however, quite long. In this paper, we propose a new efficient heuristic algorithm which balances traffic on networks by achieving minimization of the maximum betweenness in the much smaller number of iteration steps for convergence than that by the algorithm of Danila et al.  相似文献   

20.
In this paper, we present an algorithm for enhancing synchronizability of dynamical networks with prescribed degree distribution. The algorithm takes an unweighted and undirected network as input and outputs a network with the same node-degree distribution and enhanced synchronization properties. The rewirings are based on the properties of the Laplacian of the connection graph, i.e., the eigenvectors corresponding to the second smallest and the largest eigenvalues of the Laplacian. A term proportional to the eigenvectors is adopted to choose potential edges for rewiring, provided that the node-degree distribution is preserved. The algorithm can be implemented on networks of any sizes as long as their eigenvalues and eigenvectors can be calculated with standard algorithms. The effectiveness of the proposed algorithm in enhancing the network synchronizability is revealed by numerical simulation on a number of sample networks including scale-free, Watts-Strogatz, and Erdo?s-Re?nyi graphs. Furthermore, a number of network's structural parameters such as node betweenness centrality, edge betweenness centrality, average path length, clustering coefficient, and degree assortativity are tracked as a function of optimization steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号