共查询到20条相似文献,搜索用时 0 毫秒
1.
We simulate gas-liquid flows caused by rapid depressurization using a molecular dynamics model. The model consists of two types of Lennard-Jones particles, which we call liquid particles and gas particles. These two types of particles are distinguished by their mass and strength of interaction: a liquid particle has heavier mass and stronger interaction than a gas particle. By simulations with various initial number densities of these particles, we found that there is a transition from a spray flow to a network flow with an increase of the number density of the liquid particles. At the transition point, the size of the liquid droplets follows a power-law distribution, while it follows an exponential distribution when the number density of the liquid particles is lower than the critical value. The comparison between the transition of the model and that of models of percolation is discussed. The change of the average droplet size with the initial number density of the gas particles is also presented. 相似文献
2.
3.
使用非平衡分子动力学模拟方法研究了单原子LJ流体的非牛顿流变行为,并在系统中分别施加稳态Couette流场和振荡剪切流场.在Couette流场的模拟中,流体出现剪切变稀和法向应力差效应,不同剪切率下的径向分布函数反映了流体分子由于剪切所导致的微观结构变化,通过分析势能函数发现当剪切率增大时,分子间排斥作用增强,吸引作用减弱.在振荡剪切流场的模拟中,发现剪切应力和剪切率之间的相位差随频率增加而增加,随频率增加复数粘度的实部先增大再减小,虚部单调增加,导致虚部粘度相对实部粘度比例增大,弹性模量和粘性模量之比也随频率增加而增加.这三点现象表明LJ流体出现粘弹性行为,且在高频率下,弹性所占比重增大. 相似文献
4.
Sarit K. Das G. Prakash Narayan Anoop K. Baby 《Journal of nanoparticle research》2008,10(7):1099-1108
Pool boiling heat transfer using nanofluids (which are suspensions of nano-sized particles in a base fluid) has been a subject
of many investigations and incoherent results have been reported in literature regarding the same. In the past, experiments
were conducted in nucleate pool boiling with varying parameters such as particle size, concentration, surface roughness etc.
and all sort of results ranging from heat transfer enhancement, deterioration and no effect were reported. This work tries
to segregate a survey on pool boiling of nanofluids with respect to particle concentration. This is due to the fact that a
major drift in heat transfer behavior is observed at higher and lower particle concentration. But upon deep perusal it has
been found that deterioration in heat transfer coefficient are mainly observed at higher particle concentrations (4–16% by
weight) and enhancements mainly at lower particle concentrations (0.32–1.25% by weight). Moreover, the relative size of the
particle with respect to the surface roughness of the heating surface seems to play an important role in understanding the
boiling behaviour. Also, recent works have reported that change in ‘surface wetting’ of the heating surface due to nanofluids
and the formation of a porous layer modifiying nucleation site density can be of importance in predicting nucleate pool boiling
characteristics of nanofluids. In the present paper, attempts are made to make systematic analysis of results in literature
and try to bring out a common understanding of the results in literature. 相似文献
5.
Molecular dynamics and Monte Carlo techniques are employed for the study of binary Lennard-Jones fluids. Systematic comparisons between the predictions of both techniques are discussed, with particular emphasis on the dependency of the structural properties with respect to temperature and Lennard-Jones potential parameters. 相似文献
6.
Computer simulations (molecular dynamics) were performed for ensembles of flexible tangent Lennard-Jones chains consisting of n sites (n = 1, 2, 4, 8, and 16). From these simulations, the orthobaric liquid and vapour densities were calculated not only with the traditional method of simulating a liquid film in coexistence with vapour, but also using the rigorous thermodynamic condition of satisfying the chemical potential equality between the phases in equilibrium. The agreement with literature data, as far as such exist, is excellent. 相似文献
7.
One-dimensional Lennard-Jones systems are investigated by molecular dynamics simulations. The full Lennard-Jones potential is compared to the repulsive Lennard-Jones potential. It is found that the pair correlation function and the normalized velocity autocorrelation function agree at high densities and high temperature. However, the diffusion coefficient indicates that the attractive potential introduces additional correlations into particle dynamics which are not reflected in the statics. These results are in agreement with three-dimensional studies. 相似文献
8.
9.
10.
J. Largo 《Molecular physics》2016,114(16-17):2391-2399
ABSTRACTThe thermodynamic properties of a fluid with an interaction potential consisting in a hard-sphere core plus a Lennard-Jones tail have been obtained by Monte Carlo (MC) NVT simulation as a function of the density along several isotherms. In addition, the liquid–vapour coexistence has been determined by means of histogram-reweighting MC. These data have been used to analyse the performance of perturbation theory. To this end, the first three perturbation terms of the inverse temperature expansion of the Helmholtz free energy have been obtained by means of MC NVT simulations to test the convergence of the perturbation series and to compare with the predictions of the coupling parameter series expansion. Then, the predictions of the latter theory for the thermodynamic properties have been compared with the simulations, revealing the overall excellent performance of this perturbation theory for this model fluid, except in the vicinity of the critical point. 相似文献
11.
The influence of dispersive long-range interactions on properties of vapour–liquid equilibria and interfaces of six binary Lennard-Jones (LJ) mixtures was studied by molecular dynamics (MD) simulations and density gradient theory (DGT). The mixtures were investigated at a constant temperature T, at which the low-boiling component, which is the same in all mixtures, is subcritical. Two different high-boiling components were considered: one is subcritical, the other is supercritical at T. Furthermore, the unlike dispersive interaction was varied such that mixtures with three different types of phase behaviour were obtained: ideal, low-boiling azeotrope, and high-boiling azeotrope. In a first series of simulations, the full LJ potential was used to describe these mixtures. To assess the influence of the long-range interactions, these results were compared with simulations carried out with the LJ truncated and shifted (LJTS) potential applying the corresponding states principle. The dispersive long-range interactions have a significant influence on the surface tension and the interfacial thickness of the studied mixtures, whereas the relative adsorption and the enrichment are hardly affected. Furthermore, the influence of the long-range interactions on Henry's law constants and the phase envelopes of the vapour–liquid equilibrium was investigated. The long-range interactions have practically no influence on the composition dependency of the investigated mixture properties. 相似文献
12.
液态Ga及其合金的熔点低、毒副作用小、导电率高,使得这类液态金属能像石墨烯一样被广泛应用于微流器件、柔性电子器件中,制备这些器件的关键在于有效控制各生产环节中液态金属在固体界面上的润湿性及形貌特征.基于Lennard-Jones(L-J)势函数,利用分子动力学模拟方法研究了金属Ga在石墨烯表面的润湿性,根据模拟结果拟合的L-J势参数能正确描述Ga原子与衬底之间的相互作用并得到了与实验值极为接近的润湿角,发现衬底与液膜间相互作用的微小改变都会对最终润湿形态产生极大影响,平衡态的润湿角和脱离衬底速度随着Ga-C间势能的减小而增大,并成功获得了不同厚度的Ga液膜在石墨烯表面的形态演变规律,极为符合液态Ga的基本特性.利用所得L-J势函数参数模拟了液态Ga在粗糙度相同但纳米柱尖端形貌不同的C材料表面的润湿演变,发现纳米柱尖端形貌对液态Ga的润湿过程及状态影响极大. 相似文献
13.
14.
采用分子动力学模拟技术,通过对非高斯参数α_2(t)、粘度η等动力学参数的计算探究了原子尺寸对Lennard-Jones(LJ)液体在玻璃转变过程中动力学不均匀性的影响.结果表明在玻璃转变温度T_g附近,原子尺寸越小,粘度值增加越显著,且粘度随温度的变化满足Vogel–Fulcher–Tammann (VFT)方程;β弛豫阶段的非高斯参数α_2(t)与时间的关系满足幂律函数,且随着原子尺寸的减小动力学不均匀性越来越明显. 相似文献
15.
对传统的光滑粒子动力学方法进行了改进, 改进的光滑粒子动力学方法对传统粒子方法中的核近似式和粒子近似式进行了修正, 采用Riemann 算法求解光滑粒子动力学流体控制方程, 添加了表面张力的计算程序, 考虑了表面张力对液滴溅落的影响. 应用改进的光滑粒子动力学方法对液滴静止状态下冲击液面的飞溅过程进行了数值模拟. 计算结果表明, 改进的光滑粒子动力学方法能够有效地描述液滴溅落液面的动力学特性和自由表面变化特征, 能够得到稳定精度的结果. 相似文献
16.
Surface coating techniques are commonly used to increase heat transfer and control critical heat flux. In this research, we used anodizing—an electrochemical coating process—to coat an aluminum oxide layer on the aluminum plain surface. This porous nanostructured coating has uniform, cylindrical, parallel nanochannels, and closed end pores. Next, we conducted saturated pool boiling tests on the anodized samples, using deionized water and the CHFs were measured. We found that porous nanostructured coatings, due to their improved surface characteristics, particularly wettability, increased CHF values and also critical heat flux increased linearly with decreasing the contact angle. 相似文献
17.
采用分子动力学(MD)模拟方法,研究了二元体系中相分离过程、粒子的扩散系数以及相分离域尺寸大小随温度的变化规律.发现,相分离域随温度的生长过程可以分为两个阶段,分别是温度比较高的快速生长阶段和低温时的稳定生长阶段;相分离体系中系统的扩散激活能不是常数,而是一个随温度变化的函数,并且当温度高于60 K时,满足关系式E(T)=a+bTc.讨论了组元尺寸的变化对相分离过程的影响.结果表明,随两组元中某一组元
关键词:
相分离
扩散
分子动力学模拟 相似文献
18.
本文对传统的光滑粒子动力学方法进行了改进.改进的光滑粒子动力学方法对传统粒子方法中的核梯度进行了修正,采用了一种新型的耦合边界条件,添加了表面张力和人工应力的计算程序.应用改进的光滑粒子动力学方法对液滴冲击液膜问题进行了数值模拟.得到了不同时刻液滴内部的压力变化特征,精细地捕捉了不同时刻的自由面,从机理上分析了液滴产生飞溅的条件,探讨了韦伯数,表面张力对液滴冲击液膜问题的影响.计算结果表明,改进光滑粒子动力学方法能够有效地描述液滴冲击液膜的动力学特性和自由表面变化特征,能够得到稳定精度的结果. 相似文献
19.