首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In this paper, we have examined magnetized quark and strange quark matter in the spherical symmetric space–time admitting one-parameter group of conformal motions. For this purpose, we have solved Einstein’s field equations for spherical symmetric space–time via conformal motions. Also, we have discussed the features of the obtained solutions.  相似文献   

2.
徐书生 《中国物理C(英文版)》2022,46(1):014105-014105-8
In the contact interaction model,the quark propagator has only one solution,namely,the chiral symmetry breaking solution,at vanishing temperature and density in the case of physical quark mass.We generalize the condensate feedback onto the coupling strength from the 2 flavor case to the 2+1 flavor case,and find the Wigner solution appears in some regions,which enables us to tackle chiral phase transition as two-phase coexistences.At finite chemical potential,we analyze the chiral phase transition in the conditions of electric charge neutrality andβequilibrium.The four chemical potentials,μuds and He,are constrained by three conditions,so that one inde-pendent variable remains:we choose the average quark chemical potential as the free variable.All quark masses and number densities suffer discontinuities at the phase transition point.The strange quarks appear after the phase trans-ition since the system needg more energy to produce a d.-quark than an s-quark.Taking the EOS as an input,the TOV equations are solved numerically,and we show that the mass--radius relation is sensitive to the EOS.The max-imum mass of strange quark stars is not susceptible to the parameter Aq we introduced.  相似文献   

3.
The thermodynamics of strange quark matter with density dependent bag constant are studied self-consistently in the framework of the general ensemble theory and the MIT bag model.In our treatment,an additional term is found in the expression of pressure.With the additional term,the zero pressure locates exactly at the lowest energy state,indicating that our treatment is a self-consistently thermodynamic treatment.The self-consistent equations of state of strange quark matter in both the normal and color-fla...  相似文献   

4.
5.
A phenomenological QCD quasiparticle model provides a means to map lattice QCD results to regions, relevant for a variety of heavy-ion collision experiments at larger baryon density. We report on the effects of collectives modes and damping on the equation of state.  相似文献   

6.
Strange stars (ReSS) calculated from a realistic equation of state (EOS), that incorporate chiral symmetry restoration as well as deconfinement at high density [Phys. Lett. B 438 (1998) 123; Phys. Lett. B 447 (1999) 352, Addendum; Phys. Lett. B 467 (1999) 303, Erratum; Indian J. Phys. B 73 (1999) 377] show compact objects in the mass radius curve. We compare our calculations of incompressibility for this EOS with that of nuclear matter. One of the nuclear matter EOS has a continuous transition to ud-matter at about five times normal density. Another nuclear matter EOS incorporates density dependent coupling constants. From a look at the consequent velocity of sound, it is found that the transition to ud-matter seems necessary.  相似文献   

7.
It is still a matter of debate to understand the equation of state of cold matter with supra-nuclear density in compact stars because of unknown non-perturbative strong interaction between quarks. Nevertheless, it is speculated from an astrophysical view point that quark clusters could form in cold quark matter due to strong coupling at realistic baryon densities. Although it is hard to calculate this conjectured matter from first principles, one can expect that the inter-cluster interaction will share some general features with the nucleon-nucleon interaction successfully depicted by various models. We adopt a two-Gaussian component soft-core potential with these general features and show that quark clusters can form stable simple cubic crystal structure if we assume that the wave function of quark clusters have a Gaussian form. With this parametrization, the Tolman-Oppenheimer-Volkoff equation is solved with reasonably constrained parameter space to give mass-radius relations of crystalline solid quark stars. With baryon number densities truncated at 2n0 at surface and the range of the interaction fixed at 2 fm we can reproduce similar mass-radius relations to that obtained with bag model equations of state. The maximum mass ranges from 0.5M to 3M. The recently measured high pulsar mass ( 2M) is then used to constrain the parameters of this simple interaction potential.  相似文献   

8.
We calculate the strange star properties in the framework of the Field Correlator Method. We find that for gluon condensate values G2G2 in the range 0.006–0.007 GeV40.0060.007 GeV4, which give a critical temperature Tc∼170 MeVTc170 MeV at μc=0μc=0, the sequences of strange stars are compatible with some of the semi-empirical mass–radius relations and data obtained from astrophysical observations.  相似文献   

9.
Abstract

The phase diagram and equations of state of BaSO4, were determined up to 29 GPa and 1000 K in a resistance-heating type diamond anvil cell. At room temperature, barite is the stable form of BaSO4 which undergoes a reversible phase transition at 10 GPa. The high-pressure form is tentatively determined to be triclinic. At high temperature, a similar phase transition takes place in BaSO4, but at a pressure higher than that at room temperature. Our results indicate that the phase boundary of the two polymorphs in BasO4 has a positive slope (dT/dP) of 90 K/GPa. The equations of state for both barite and its high-pressure phase are reported.  相似文献   

10.
包特木尔巴根  杨兴强  喻孜 《物理学报》2013,62(1):12101-012101
在MTT口袋模型的基础上采用密度依赖口袋常数,给出了奇异夸克物质的热力学关系,并用于描述奇异夸克物质及混合星内的夸克相,研究了奇异星、混合星的性质.结果表明,密度依赖口袋常数下,奇异夸克物质的压强公式中有一个附加项,而能量密度中则没有,从而保证了系统的热力学自洽性.在新的热力学关系下,奇异夸克物质的状态方程变软,相应的奇异星的引力质量和对应的半径均变小;混合星的状态方程也变软,其质量变小,而对应的半径也变小.说明经热力学自洽处理后该模型对中子星的状态方程及相应的质量-半径关系等都有显著的影响.  相似文献   

11.
The difference between the strange and antistrange quark distributions,δs(x) = s(x) ˉs(x),and the combination of light quark sea and strange quark sea,Δ(x) =ˉ d(x) + uˉ(x) s(x) ˉs(x),are originated from non-perturbative processes and can be calculated using non-perturbative models of the nucleon.We report calculations of δs(x) and Δ(x) using the meson cloud model.Combining our calculations of Δ(x) with relatively well known light antiquark distributions obtained from global analysis of available experimental data,we estimate the total strange sea distributions of the nucleon.  相似文献   

12.
The difference between the strange and antistrange quark distributions,δs(x) = s(x) ˉs(x),and the combination of light quark sea and strange quark sea,Δ(x) =ˉ d(x) + uˉ(x) s(x) ˉs(x),are originated from non-perturbative processes and can be calculated using non-perturbative models of the nucleon.We report calculations of δs(x) and Δ(x) using the meson cloud model.Combining our calculations of Δ(x) with relatively well known light antiquark distributions obtained from global analysis of available experimental data,we estimate the total strange sea distributions of the nucleon.  相似文献   

13.
We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where u, d masses were neglected and first order interactions were taken into account. We find that at low temperatures and high relative perturbations, the bulk viscosity is higher by 2 to 3 orders of magnitude while at low perturbations the enhancement is by 1–2 order of magnitude as compared to earlier results. Also the damping time is 2–3 orders of magnitude lower implying that the star reaches stability much earlier than in MIT bag model calculations.  相似文献   

14.
Abstract

The equation of state of matter at extremely high pressures P~ 10–100 Mbars and temperatures T~ 5–50 eV has been very intensively investigated1,2. The experimental determination of the matter properties in this region of parameters is very expensive, while the theory meets with grave difficulties because the matter under these conditions represents a strongly coupled multicomponent nonideal plasma. In practice, for calculations of the equation of state quasiclassical models are used, as those by Thomas-Fermi (TF) and Thomas-Fenni with corrections3. However, they do not include the shell effects. Most consistently these effects can be taken into account by quantomechanical self-consistent models4–7  相似文献   

15.
Influences of the bag constant on properties of hybrid stars   总被引:1,自引:0,他引:1       下载免费PDF全文
Influences of the bag constant on the properties of hybrid stars are investigated by using relativistic mean field theory and the MIT bag model to describe the hadron phase and quark phase in the interior of neutron stars, respectively. Our results indicate that the onset of hadron-quark phase transition is put off and the appearance of hyperon species is increased with the increase in bag constant. As a result, the hybrid star equation of state for a mixed phase range stiffens whereas that of the quark phase range softens, and the gravitational mass as well as the corresponding radius of hybrid stars are increased obviously. The gravitational mass of a hybrid star is increased from 1.42 Mo (M<,⊙> is solar mass) to 1.63M<,⊙> and the corresponding radius is changed from 9.1 km to 12.2 km when the bag constant (B<'1/4>) is increased from 170 MeV to 200 MeV. It is interesting to find that hybrid star equations of state become non-smooth when the TM2 parameter sets in the framework of relativistic mean field theory used to describe the hadronic matter, and consequently, the third family of compact stars appear in the mass-radius relations of hybrid stars in the narrow scope of the bag constant from 175 MeV to 180 MeV. These show that the choice of the bag constant in the MIT bag model has significant influence on the properties of hybrid stars.  相似文献   

16.
In this work we use the statistical measures of information entropy, disequilibrium and complexity to discriminate different approaches and parametrizations for different equations of state for quark stars. We confirm the usefulness of such quantities to quantify the role of interactions in such stars. We find that within this approach, a quark matter equation of state such as SU(2) NJL with vectorial coupling and phase transition is slightly favoured and deserves deeper studies.  相似文献   

17.
We report on the study of the mass-radius (M–R) relation and the radial oscillations of magnetized proto strange stars. For the quark matter we have employed the very recent modification, the temperature- and density-dependent quark mass model of the well-known density-dependent quark mass model. We find that the effect of magnetic field, both on the maximum mass and radial frequencies, is rather small. Also a proto strange star, whether magnetized or otherwise, is more likely to evolve into a strange star rather than transform into a black hole.  相似文献   

18.
Influences of the bag constant on the properties of hybrid stars are investigated by using relativistic mean field theory and the MIT bag model to describe the hadron phase and quark phase in the interior of neutron stars, respectively. Our results indicate that the onset of hadron-quark phase transition is put off and the appearance of hyperon species is increased with the increase in bag constant. As a result, the hybrid star equation of state for a mixed phase range stiffens whereas that of the quark phase range softens, and the gravitational mass as well as the corresponding radius of hybrid stars are increased obviously. The gravitational mass of a hybrid star is increased from 1.42 M (M is solar mass) to 1.63 M and the corresponding radius is changed from 9.1 km to 12.2 km when the bag constant (B1/4) is increased from 170 MeV to 200 MeV. It is interesting to find that hybrid star equations of state become non-smooth when the TM2 parameter sets in the framework of relativistic mean field theory used to describe the hadronic matter, and consequently, the third family of compact stars appear in the mass-radius relations of hybrid stars in the narrow scope of the bag constant from 175 MeV to 180 MeV. These show that the choice of the bag constant in the MIT bag model has significant influence on the properties of hybrid stars.  相似文献   

19.
建立了凝聚态物质的一个三项式状态方程:以Faussurier平均原子模型为基础计算电子热压和电子热能;以Cowan模型为基础计算离子热压和离子热能;用基于实验数据的半经验拟合公式计算物质的冷压和冷能。用实验数据检验了用平均原子模型计算的平均电离度。将状态方程与Hugoniot关系式相结合,计算了Be和Al的冲击绝热曲线,结果充分地展现出电子在高温、高密度条件下的壳层结构效应。  相似文献   

20.
Properties of hybrid stars in an extended MIT bag model   总被引:1,自引:0,他引:1  
The properties of hybrid stars are investigated in the framework of the relativistic mean field theory (RMFT) and an MIT bag model with density-dependent bag constant to describe the hadron phase (HP) and quark phase (QP), respectively. We find that the density-dependent B(p) decreases with baryon density p; this decrement makes the strange quark matter become more energetically favorable than ever, which makes the threshold densities of the hadron-quark phase transition lower than those of the original bag constant case. In this case, the hyperon degrees of freedom can not be considered. As a result, the equations of state of a star in the mixed phase (MP) become softer whereas those in the QP become stiffer, and the radii of the star obviously decrease. This indicates that the extended MIT bag model is more suitable to describe hybrid stars with small radii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号