首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study uses the fourteen stock indices as the sample and then utilizes eight parametric volatility forecasting models and eight composed volatility forecasting models to explore whether the neural network approach and the settings of leverage effect and non-normal return distribution can promote the performance of volatility forecasting, and which one of the sixteen models possesses the best volatility forecasting performance. The eight parametric volatility forecasts models are composed of the generalized autoregressive conditional heteroskedasticity (GARCH) or GJR-GARCH volatility specification combining with the normal, Student’s t, skewed Student’s t, and generalized skewed Student’s t distributions. Empirical results show that, the performance for the composed volatility forecasting approach is significantly superior to that for the parametric volatility forecasting approach. Furthermore, the GJR-GARCH volatility specification has better performance than the GARCH one. In addition, the non-normal distribution does not have better forecasting performance than the normal distribution. In addition, the GJR-GARCH model combined with both the normal distribution and a neural network approach has the best performance of volatility forecasting among sixteen models. Thus, a neural network approach significantly promotes the performance of volatility forecasting. On the other hand, the setting of leverage effect can encourage the performance of volatility forecasting whereas the setting of non-normal distribution cannot.  相似文献   

2.
This study examines the influence of structural changes in volatility on the transmission of information in two crude oil prices. In an effort to assess the impact of these structural changes, we first identify the time points at which structural changes in volatility occurred using the ICSS algorithm, and then incorporate this information into our volatility modeling. From the estimation results using a bi-variate GARCH framework with and without structural change dummies, we find that the degree of persistence of volatility can be reduced via the incorporation of these structural changes in the volatility model. In this direction, we conclude that ignoring structural changes may distort the direction of information inflow and volatility transmission between crude oil markets.  相似文献   

3.
Pekka Malo 《Physica A》2009,388(22):4763-4779
Electricity prices are known to exhibit multifractal properties. We accommodate this finding by investigating multifractal models for electricity prices. In this paper we propose a flexible Copula-MSM (Markov Switching Multifractal) approach for modeling spot and weekly futures price dynamics. By using a conditional copula function, the framework allows us to separately model the dependence structure, while enabling use of multifractal stochastic volatility models to characterize fluctuations in marginal returns. An empirical experiment is carried out using data from Nord Pool. A study of volatility forecasting performance for electricity spot prices reveals that multifractal techniques are a competitive alternative to GARCH models. We also demonstrate how the Copula-MSM model can be employed for finding optimal portfolios, which minimizes the Conditional Value-at-Risk.  相似文献   

4.
Path integral techniques for the pricing of financial options are mostly based on models that can be recast in terms of a Fokker-Planck differential equation and that, consequently, neglect jumps and only describe drift and diffusion. We present a method to adapt formulas for both the path-integral propagators and the option prices themselves, so that jump processes are taken into account in conjunction with the usual drift and diffusion terms. In particular, we focus on stochastic volatility models, such as the exponential Vasicek model, and extend the pricing formulas and propagator of this model to incorporate jump diffusion with a given jump size distribution. This model is of importance to include non-Gaussian fluctuations beyond the Black-Scholes model, and moreover yields a lognormal distribution of the volatilities, in agreement with results from superstatistical analysis. The results obtained in the present formalism are checked with Monte Carlo simulations.  相似文献   

5.
The volatility of financial markets is often assumed constant, but phenomena such as volatility clustering and jumps in volatility suggest that this assumption is rarely true. Numerous studies have been conducted to investigate the jump or breakpoint of the volatility phenomenon, and their findings have been applied in modeling volatility. However, few studies address the issue from a practical point of view. Specifically, a financial crisis accompanied by markedly increased volatility can be approached from this perspective to suggest the persistence or termination of a crisis. This paper develops the ICSS-CRISIS algorithm, a new approach to identify a crisis period along with the conditions for the ICSS algorithm which represents the structural breakpoints of volatility. This algorithm recommends a guideline to determine whether an existing crisis in the market resulted from financial volatility, was terminated, or is continuing. The method is tested along with the ICSS algorithm to prove the effectiveness of Credit Default Swap index data.  相似文献   

6.
Kevin Daly 《Physica A》2008,387(11):2377-2393
This paper explains in non-technical terms various techniques used to measure volatility ranging from time invariant measures to time variant measures. It is shown that a weakness of the former measures arises from the underlying assumption that volatility is considered to be constant over time. This observation has led researchers to develop time variant measures based on the assumption that volatility changes over time. The introduction of the original ARCH model by Engle has spawned an ever increasing variety of models such as GARCH, EGARCH, NARCH, ARCH-M MARCH and the Taylor-Schwert model. The degree of sophistication employed in developing these models is discussed in detail as are the models characteristics used to capture the underlying economic and financial time series data including volatility clustering, leverage effects and the persistence of volatility itself. A feature of these more elaborate models is that they generally obtain a better fit to the data in-sample.  相似文献   

7.
The major goal of this paper is to examine the hypothesis that stock returns and return volatility are asymmetric, threshold nonlinear, functions of change in trading volume. A minor goal is to examine whether return spillover effects also display such asymmetry. Employing a double-threshold GARCH model with trading volume as a threshold variable, we find strong evidence supporting this hypothesis in five international market return series. Asymmetric causality tests lend further support to our trading volume threshold model and conclusions. Specifically, an increase in volume is positively associated, while decreasing volume is negatively associated, with the major price index in four of the five markets. The volatility of each series also displays an asymmetric reaction, four of the markets display higher volatility following increases in trading volume. Using posterior odds ratio, the proposed threshold model is strongly favored in three of the five markets, compared to a US news double threshold GARCH model and a symmetric GARCH model. We also find significant nonlinear asymmetric return spillover effects from the US market.  相似文献   

8.
Traffic volatility modeling has been highly valued in recent years because of its advantages in describing the uncertainty of traffic flow during the short-term forecasting process. A few generalized autoregressive conditional heteroscedastic (GARCH) models have been developed to capture and hence forecast the volatility of traffic flow. Although these models have been confirmed to be capable of producing more reliable forecasts than traditional point forecasting models, the more or less imposed restrictions on parameter estimations may make the asymmetric property of traffic volatility be not or insufficiently considered. Furthermore, the performance of the models has not been fully evaluated and compared in the traffic forecasting context, rendering the choice of the models dilemmatic for traffic volatility modeling. In this study, an omnibus traffic volatility forecasting framework is proposed, where various traffic volatility models with symmetric and asymmetric properties can be developed in a unifying way by fixing or flexibly estimating three key parameters, namely the Box-Cox transformation coefficient λ, the shift factor b, and the rotation factor c. Extensive traffic speed datasets collected from urban roads of Kunshan city, China, and from freeway segments of the San Diego Region, USA, were used to evaluate the proposed framework and develop traffic volatility forecasting models in a number of case studies. The models include the standard GARCH, the threshold GARCH (TGARCH), the nonlinear ARCH (NGARCH), the nonlinear-asymmetric GARCH (NAGARCH), the Glosten–Jagannathan–Runkle GARCH (GJR-GARCH), and the family GARCH (FGARCH). The mean forecasting performance of the models was measured with mean absolute error (MAE) and mean absolute percentage error (MAPE), while the volatility forecasting performance of the models was measured with volatility mean absolute error (VMAE), directional accuracy (DA), kickoff percentage (KP), and average confidence length (ACL). Experimental results demonstrate the effectiveness and flexibility of the proposed framework and provide insights into how to develop and select proper traffic volatility forecasting models in different situations.  相似文献   

9.
Yu Wei  Peng Wang 《Physica A》2008,387(7):1585-1592
In this paper, taking about 7 years’ high-frequency data of the Shanghai Stock Exchange Composite Index (SSEC) as an example, we propose a daily volatility measure based on the multifractal spectrum of the high-frequency price variability within a trading day. An ARFIMA model is used to depict the dynamics of this multifractal volatility (MFV) measures. The one-day ahead volatility forecasting performances of the MFV model and some other existing volatility models, such as the realized volatility model, stochastic volatility model and GARCH, are evaluated by the superior prediction ability (SPA) test. The empirical results show that under several loss functions, the MFV model obtains the best forecasting accuracy.  相似文献   

10.
This paper investigates the asymmetry and long-memory volatility behavior of the Malaysian Stock Exchange daily data over a period of 1991–2005. The long-spanning data set enable us to examine piecewise before, during and after the economic crisis encountered in the Malaysian stock market. The daily index returns are adjusted for infrequent trading effect and the estimated Hurst's parameter allows us to rank the market efficiency across the periods. The leverage effect, clustering volatility and long-memory behavior of the volatility are fitted by the asymmetry GARCH models and GARCH with the inclusion of realized volatility at the final period. Across the periods, the results show the mixture of symmetry and asymmetry GARCH modeling.  相似文献   

11.
This paper addresses the topic of classifying financial time series in a fuzzy framework proposing two fuzzy clustering models both based on GARCH models. In general clustering of financial time series, due to their peculiar features, needs the definition of suitable distance measures. At this aim, the first fuzzy clustering model exploits the autoregressive representation of GARCH models and employs, in the framework of a partitioning around medoids algorithm, the classical autoregressive metric. The second fuzzy clustering model, also based on partitioning around medoids algorithm, uses the Caiado distance, a Mahalanobis-like distance, based on estimated GARCH parameters and covariances that takes into account the information about the volatility structure of time series. In order to illustrate the merits of the proposed fuzzy approaches an application to the problem of classifying 29 time series of Euro exchange rates against international currencies is presented and discussed, also comparing the fuzzy models with their crisp version.  相似文献   

12.
Recent studies in the econophysics literature reveal that price variability has fractal and multifractal characteristics not only in developed financial markets, but also in emerging markets. Taking high-frequency intraday quotes of the Shanghai Stock Exchange Component (SSEC) Index as example, this paper proposes a new method to measure daily Value-at-Risk (VaR) by combining the newly introduced multifractal volatility (MFV) model and the extreme value theory (EVT) method. Two VaR backtesting techniques are then employed to compare the performance of the model with that of a group of linear and nonlinear generalized autoregressive conditional heteroskedasticity (GARCH) models. The empirical results show the multifractal nature of price volatility in Chinese stock market. VaR measures based on the multifractal volatility model and EVT method outperform many GARCH-type models at high-risk levels.  相似文献   

13.
B. Dupoyet  H.R. Fiebig  D.P. Musgrove 《Physica A》2011,390(18-19):3120-3135
We explore a simple lattice field model intended to describe statistical properties of high-frequency financial markets. The model is relevant in the cross-disciplinary area of econophysics. Its signature feature is the emergence of a self-organized critical state. This implies scale invariance of the model, without tuning parameters. Prominent results of our simulation are time series of gains, prices, volatility, and gains frequency distributions, which all compare favorably to features of historical market data. Applying a standard GARCH(1,1) fit to the lattice model gives results that are almost indistinguishable from historical NASDAQ data.  相似文献   

14.
Guanghui Huang  Jianping Wan 《Physica A》2008,387(10):2306-2316
A nonparametric approach for European option valuation is proposed in this paper, which adopts a purely jump model to describe the price dynamics of the underlying asset, and the minimal entropy martingale measure for those jumps is used as the pricing measure of this market. A simple Monte Carlo simulation method is proposed to calculate the price of derivatives under this risk neural measure. And the volatility of the spot market can be renewed automatically without particular specification in the proposed method. The performances of the proposed method are compared to that of the Black-Scholes formula in an artificial world and the real world. The results of our investigations suggest that the proposed method is a valuable method.  相似文献   

15.
Javier Villarroel 《Physica A》2007,382(1):321-329
We present a model to describe the stochastic evolution of stocks that show a strong resistance at some level and generalize to this situation the evolution based upon geometric Brownian motion. If volatility and drift are related in a certain way we show that our model can be integrated in an exact way. The related problem of how to prize general securities that pay dividends at a continuous rate and earn a terminal payoff at maturity T is solved via the martingale probability approach.  相似文献   

16.
Yiming Wang  Hanfei Tong 《Physica A》2008,387(26):6575-6583
In this paper we propose a new type of continuous-time stochastic volatility model, SVDJ, for the spot exchange rate of RMB, and other foreign currencies. In the model, we assume that the change of exchange rate can be decomposed into two components. One is the normally small-cope innovation driven by the diffusion motion; the other is a large drop or rise engendered by the Poisson counting process. Furthermore, we develop a MCMC method to estimate our model. Empirical results indicate the significant existence of jumps in the exchange rate. Jump components explain a large proportion of the exchange rate change.  相似文献   

17.
In this paper, we model natural gas market volatility using GARCH-class models with long memory and fat-tail distributions. First, we forecast price volatilities of spot and futures prices. Our evidence shows that none of the models can consistently outperform others across different criteria of loss functions. We can obtain greater forecasting accuracy by taking the stylized fact of fat-tail distributions into account. Second, we forecast volatility of basis defined as the price differential between spot and futures. Our evidence shows that nonlinear GARCH-class models with asymmetric effects have the greatest forecasting accuracy. Finally, we investigate the source of forecasting loss of models. Our findings based on a detrending moving average indicate that GARCH models cannot capture multifractality in natural gas markets. This may be the plausible explanation for the source of model forecasting losses.  相似文献   

18.
T.S. Biró 《Physica A》2008,387(7):1603-1612
In this paper we study the possible microscopic origin of heavy-tailed probability density distributions for the price variation of financial instruments. We extend the standard log-normal process to include another random component in the so-called stochastic volatility models. We study these models under an assumption, akin to the Born-Oppenheimer approximation, in which the volatility has already relaxed to its equilibrium distribution and acts as a background to the evolution of the price process. In this approximation, we show that all models of stochastic volatility should exhibit a scaling relation in the time lag of zero-drift modified log-returns. We verify that the Dow-Jones Industrial Average index indeed follows this scaling. We then focus on two popular stochastic volatility models, the Heston and Hull-White models. In particular, we show that in the Hull-White model the resulting probability distribution of log-returns in this approximation corresponds to the Tsallis (t-Student) distribution. The Tsallis parameters are given in terms of the microscopic stochastic volatility model. Finally, we show that the log-returns for 30 years Dow Jones index data is well fitted by a Tsallis distribution, obtaining the relevant parameters.  相似文献   

19.
ARCH and GARCH stochastic processes are widely used in finance and are generally accepted as good approximations when modelling the price dynamics with Gaussian conditional probability. It can be seen that certain aspects of the empirical data for asset price changes seems to more closely fit a Truncated Lévy Flight or GARCH model, but each with individual shortfalls. In this paper therefore, we combine the GARCH process with a conditional truncated Lévy distribution in order to build a hybrid model that most notably describes the price change and associated volatility probability density distributions and scaling behaviour over different time horizons.  相似文献   

20.
We investigate the exponential dependence of switching speeds in thin-film memristors for high electric fields and elevated temperatures. An existing nonlinear ionic drift model and our simulation results explain the very large ratios for the state lifetime to switching speed experimentally observed in devices for which resistance switching is due to ion migration. Given the activation barriers of the drifting species, it is possible to predict the volatility and switching time for various material systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号