首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete time. But whereas a continuous-time random walk can be obtained as the limit of a sequence of discrete-time random walks, the two types of quantum walk appear fundamentally different, owing to the need for extra degrees of freedom in the discrete-time case. In this article, I describe a precise correspondence between continuous- and discrete- time quantum walks on arbitrary graphs. Using this correspondence, I show that continuous-time quantum walk can be obtained as an appropriate limit of discrete-time quantum walks. The correspondence also leads to a new technique for simulating Hamiltonian dynamics, giving efficient simulations even in cases where the Hamiltonian is not sparse. The complexity of the simulation is linear in the total evolution time, an improvement over simulations based on high-order approximations of the Lie product formula. As applications, I describe a continuous-time quantum walk algorithm for element distinctness and show how to optimally simulate continuous-time query algorithms of a certain form in the conventional quantum query model. Finally, I discuss limitations of the method for simulating Hamiltonians with negative matrix elements, and present two problems that motivate attempting to circumvent these limitations.  相似文献   

2.
We propose a model of time evolving networks in which a kind of transport between vertices generates new edges in the graph. We call the model “Network formed by traces of random walks”, because the transports are represented abstractly by random walks. Our numerical calculations yield several important properties observed commonly in complex networks, although the graph at initial time is only a one-dimensional lattice. For example, the distribution of vertex degree exhibits various behaviors such as exponential, power law like, and bi-modal distribution according to change of probability of extinction of edges. Another property such as strong clustering structure and small mean vertex–vertex distance can also be found. The transports represented by random walks in a framework of strong links between regular lattice is a new mechanisms which yields biased acquisition of links for vertices.  相似文献   

3.
In this paper, we study cluster synchronization in general bi-directed networks of nonidentical clusters, where all nodes in the same cluster share an identical map. Based on the transverse stability analysis, we present sufficient conditions for local cluster synchronization of networks. The conditions are composed of two factors: the common inter-cluster coupling, which ensures the existence of an invariant cluster synchronization manifold, and communication between each pair of nodes in the same cluster, which is necessary for chaos synchronization. Consequently, we propose a quantity to measure the cluster synchronizability for a network with respect to the given clusters via a function of the eigenvalues of the Laplacian corresponding to the generalized eigenspace transverse to the cluster synchronization manifold. Then, we discuss the clustering synchronous dynamics and cluster synchronizability for four artificial network models: (i) p-nearest-neighborhood graph; (ii) random clustering graph; (iii) bipartite random graph; (iv) degree-preferred growing clustering network. From these network models, we are to reveal how the intra-cluster and inter-cluster links affect the cluster synchronizability. By numerical examples, we find that for the first model, the cluster synchronizability regularly enhances with the increase of p, yet for the other three models, when the ratio of intra-cluster links and the inter-cluster links reaches certain quantity, the clustering synchronizability reaches maximal.  相似文献   

4.
Most existing methods for detection of community overlap cannot balance efficiency and accuracy for large and densely overlapping networks. To quickly identify overlapping communities for such networks, we propose a new method that uses belief propagation and conflict (PCB) to occupy communities. We first identify triangles with maximal clustering coefficients as seed nodes and sow a new type of belief to the seed nodes. Then the beliefs explore their territory by occupying nodes with high assent ability. The beliefs propagate their strength along the graph to consolidate their territory, and conflict with each other when they encounter the same node simultaneously. Finally, the node membership is judged from the belief vectors. The PCB time complexity is nearly linear and its space complexity is linear. The algorithm was tested in extensive experiments on three real-world social networks and three computer-generated artificial graphs. The experimental results show that PCB is very fast and highly reliable. Tests on real and artificial networks give excellent results compared with three newly proposed overlapping community detection algorithms.  相似文献   

5.
Networks (or graphs) appear as dominant structures in diverse domains, including sociology, biology, neuroscience and computer science. In most of the aforementioned cases graphs are directed — in the sense that there is directionality on the edges, making the semantics of the edges nonsymmetric as the source node transmits some property to the target one but not vice versa. An interesting feature that real networks present is the clustering or community structure property, under which the graph topology is organized into modules commonly called communities or clusters. The essence here is that nodes of the same community are highly similar while on the contrary, nodes across communities present low similarity. Revealing the underlying community structure of directed complex networks has become a crucial and interdisciplinary topic with a plethora of relevant application domains. Therefore, naturally there is a recent wealth of research production in the area of mining directed graphs — with clustering being the primary method sought and the primary tool for community detection and evaluation. The goal of this paper is to offer an in-depth comparative review of the methods presented so far for clustering directed networks along with the relevant necessary methodological background and also related applications. The survey commences by offering a concise review of the fundamental concepts and methodological base on which graph clustering algorithms capitalize on. Then we present the relevant work along two orthogonal classifications. The first one is mostly concerned with the methodological principles of the clustering algorithms, while the second one approaches the methods from the viewpoint regarding the properties of a good cluster in a directed network. Further, we present methods and metrics for evaluating graph clustering results, demonstrate interesting application domains and provide promising future research directions.  相似文献   

6.
张百达  吴俊杰  唐玉华  周静 《中国物理 B》2011,20(11):118903-118903
Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that traditional partitioning algorithms are designed for random networks and regular networks, rather than for scale-free networks. Multilevel graph-partitioning algorithms are currently considered to be the state of the art and are used extensively. In this paper, we analyse the reasons why traditional multilevel graph-partitioning algorithms perform poorly and present a new multilevel graph-partitioning paradigm, top down partitioning, which derives its name from the comparison with the traditional bottom-up partitioning. A new multilevel partitioning algorithm, named betweenness-based partitioning algorithm, is also presented as an implementation of top-down partitioning paradigm. An experimental evaluation of seven different real-world scale-free networks shows that the betweenness-based partitioning algorithm significantly outperforms the existing state-of-the-art approaches.  相似文献   

7.
Functional modules can be predicted using genome-wide protein–protein interactions (PPIs) from a systematic perspective. Various graph clustering algorithms have been applied to PPI networks for this task. In particular, the detection of overlapping clusters is necessary because a protein is involved in multiple functions under different conditions. graph entropy (GE) is a novel metric to assess the quality of clusters in a large, complex network. In this study, the unweighted and weighted GE algorithm is evaluated to prove the validity of predicting function modules. To measure clustering accuracy, the clustering results are compared to protein complexes and Gene Ontology (GO) annotations as references. We demonstrate that the GE algorithm is more accurate in overlapping clusters than the other competitive methods. Moreover, we confirm the biological feasibility of the proteins that occur most frequently in the set of identified clusters. Finally, novel proteins for the additional annotation of GO terms are revealed.  相似文献   

8.
Lenwood S. Heath  Nidhi Parikh 《Physica A》2011,390(23-24):4577-4587
Most real-world networks exhibit a high clustering coefficient—the probability that two neighbors of a node are also neighbors of each other. We propose two algorithms, Conf and Throw, that take triangle and single edge degree sequences as input and generate a random graph with a target clustering coefficient. We analyze them theoretically for the case of a regular graph. Conf generates a random graph with the input degree sequence and the clustering coefficient anticipated from the input. Experimental results match quite well with the anticipated clustering coefficient except for highly dense graphs, in which case the experimental clustering coefficient is higher than the anticipated value. For Throw, the degree sequence and the clustering coefficient of the generated graph varies from the input. However, it maintains the expected degree distribution, and the clustering coefficient of the generated graph can also be predicted using analytical results. Experiments show that, for Throw, the results match quite well with the analytical results. Typically, only information about degree distribution is available. We also propose an algorithm Deg that takes degree sequence and clustering coefficient as input and generates a graph with the same properties. Experiments show results for Deg that are quite similar to those for Conf.  相似文献   

9.
We study the conditions for the phase transitions of information diffusion in complexnetworks. Using the random clustered network model, a generalisation of the Chung-Lurandom network model incorporating clustering, we examine the effect of clustering underthe Susceptible-Infected-Recovered (SIR) epidemic diffusion model with heterogeneouscontact rates. For this purpose, we exploit the branching process to analyse informationdiffusion in random unclustered networks with arbitrary contact rates, and provide noveliterative algorithms for estimating the conditions and sizes of global cascades,respectively. Showing that a random clustered network can be mapped into a factor graph,which is a locally tree-like structure, we successfully extend our analysis to randomclustered networks with heterogeneous contact rates. We then identify the conditions forphase transitions of information diffusion using our method. Interestingly, for variouscontact rates, we prove that random clustered networks with higher clustering coefficientshave strictly lower phase transition points for any given degree sequence. Finally, weconfirm our analytical results with numerical simulations of both synthetically-generatedand real-world networks.  相似文献   

10.
Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.  相似文献   

11.
The ability to simulate and control complex physical situations in real time is an important element of many engineering and robotics applications, including pattern recognition and image classification. One of the ways to meet specific requirements of a process is a reduction of computational complexity of algorithms. In this work we propose a new coding of binary pattern units (BPU) that reduces the time and spatial complexity of algorithms of image classification significantly. We apply this coding to a particular but important case of the coordinated clusters representation (CCR) of images. This algorithm reduces the dimension of the CCR feature space and, as a consequence, the time and space complexity of the CCR based methods of image classification, exponentially. In addition, the new coding preserves all the fundamental properties of the CCR that are successfully used in the recognition, classification and segmentation of texture images. The same approach to the coding of BPUs can be used in the Local Binary Pattern (LBP) method. In order to evaluate the reduction of time and space complexity, we did an experiment on multiclass classification of images using the “traditional” and the new coding of the CCR. This test showed very effective reduction of the computing time and required computer memory with the use of the new coding of BPUs of the CCR, retaining 100% or a little less efficiency of classification at the time.  相似文献   

12.
Journal of Statistical Physics - The graph Laplacian and the graph cut problem are closely related to Markov random fields, and have many applications in clustering and image segmentation. The...  相似文献   

13.
Recently a great deal of effort has been made to explicitly determine the mean first-passage time (MFPT) between two nodes averaged over all pairs of nodes on a fractal network. In this paper, we first propose a family of generalized delayed recursive trees characterized by two parameters, where the existing nodes have a time delay to produce new nodes. We then study the MFPT of random walks on this kind of recursive tree and investigate the effect of the time delay on the MFPT. By relating random walks to electrical networks, we obtain an exact formula for the MFPT and verify it by numerical calculations. Based on the obtained results, we further show that the MFPT of delayed recursive trees is much shorter, implying that the efficiency of random walks is much higher compared with the non-delayed counterpart. Our study provides a deeper understanding of random walks on delayed fractal networks.  相似文献   

14.
15.
Nowadays, community detection has been raised as one of the key research areas in the online social networks mining. One of the most common algorithms in this field is label propagation algorithm (LPA). Even though the LPA method has advantages such as simplicity in understanding and implementation, as well as linear time complexity, it has an important disadvantage of the uncertainty and instability in outcomes, that is, the algorithm detects and reports different combinations of communities in each run. This problem originates from the nature of random selection in the LPA method. In this paper, a novel method is proposed based on the LPA method and the inherent structure, that is, link density feature, of the input network. The proposed method uses a sensitivity parameter (balance parameter); by choosing the appropriate values for it, the desired qualities of the identified communities can be achieved. The proposed method is called Balanced Link Density-based Label Propagation (BLDLP). In comparison with the basic LPA, the proposed method has an advantage of certainty and stability in the output results, whereas its time complexity is still comparable with the basic LPA and of course lowers than many other approaches. The proposed method has been evaluated on real-world known datasets, such as the Facebook social network and American football clubs, and by comparing it with the basic LPA, the effectiveness of the proposed method in terms of the quality of the communities found and the time complexity has been shown.  相似文献   

16.
Multiscale entropy analysis of complex physiologic time series   总被引:5,自引:0,他引:5  
There has been considerable interest in quantifying the complexity of physiologic time series, such as heart rate. However, traditional algorithms indicate higher complexity for certain pathologic processes associated with random outputs than for healthy dynamics exhibiting long-range correlations. This paradox may be due to the fact that conventional algorithms fail to account for the multiple time scales inherent in healthy physiologic dynamics. We introduce a method to calculate multiscale entropy (MSE) for complex time series. We find that MSE robustly separates healthy and pathologic groups and consistently yields higher values for simulated long-range correlated noise compared to uncorrelated noise.  相似文献   

17.
Entangled networks, synchronization, and optimal network topology   总被引:2,自引:0,他引:2  
A new family of graphs, entangled networks, with optimal properties in many respects, is introduced. By definition, their topology is such that it optimizes synchronizability for many dynamical processes. These networks are shown to have an extremely homogeneous structure: degree, node distance, betweenness, and loop distributions are all very narrow. Also, they are characterized by a very interwoven (entangled) structure with short average distances, large loops, and no well-defined community structure. This family of nets exhibits an excellent performance with respect to other flow properties such as robustness against errors and attacks, minimal first-passage time of random walks, efficient communication, etc. These remarkable features convert entangled networks in a useful concept, optimal or almost optimal in many senses, and with plenty of potential applications in computer science or neuroscience.  相似文献   

18.
We carry out comparative studies of random walks on deterministic Apollonian networks (DANs) and random Apollonian networks (RANs). We perform computer simulations for the mean first-passage time, the average return time, the mean-square displacement, and the network coverage for the unrestricted random walk. The diffusions both on DANs and RANs are proved to be sublinear. The effects of the network structure on the dynamics and the search efficiencies of walks with various strategies are also discussed. Contrary to intuition, it is shown that the self-avoiding random walk, which has been verified as an optimal local search strategy in networks, is not the best strategy for the DANs in the large size limit.  相似文献   

19.
Diffusive capture processes are known to be an effective method for information search on complex networks. The biased NN lions–lamb model provides quick search time by attracting random walkers to high degree nodes, where most capture events take place. The price of the efficiency is extreme traffic concentration on top hubs. We propose traffic load balancing provided by type specific biased random walks. For that we introduce a multi-type scale-free graph generation model, which embeds homophily structure into the network by utilizing type dependent random walks. We show analytically and with simulations that by augmenting the biased random walk method with a simple type homophily rule, we can alleviate the traffic concentration on high degree nodes by spreading the load proportionally between hubs with different types of our generated multi-type scale-free topologies.  相似文献   

20.
In this paper, we propose a new method that enables us to detect and describe the functional modules in complex networks. Using the proposed method, we can classify the nodes of networks into different modules according to their pattern of intra- and extra-module links. We use our method to analyze the modular structures of the ER random networks. We find that different modules of networks have different structure properties, such as the clustering coefficient. Moreover, at the same time, many nodes of networks participate different modules. Remarkably, we find that in the ER random networks, when the probability p is small, different modules or different roles of nodes can be Mentified by different regions in the c-p parameter space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号