首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Open systems are very important in science and engineering for their applications and the analysis of the real word. At their steady state, two apparently opposed principles for their rate of entropy production have been proposed: the minimum entropy production rate and the maximum entropy production, useful in the analysis of dissipation and irreversibility of different processes in physics, chemistry, biology and engineering. Both principles involve an extremum of the rate of the entropy production at the steady state under non-equilibrium conditions. On the other hand, in engineering thermodynamics, dissipation and irreversibility are analyzed using the entropy generation, for which there exist two principle of extrema too, the minimum and the maximum principle. Finally, oppositions to the extrema principle have been developed too. In this paper, all these extrema principles will be analyzed in order to point out the relations among them and a synthesis useful in engineering applications, in physical and chemical process analysis and in biology and biotechnology will be proposed.  相似文献   

2.
With aid of the so-called dilation method, a concise formula is obtained for the entropy production in the algebraic formulation of quantum dynamical systems. In this framework, the initial ergodic state of an external force system plays a pivotal role in generating dissipativity as a conditional expectation. The physical meaning of van Hove limit is clarified through the scale-changing transformation to control transitions between microscopic and macroscopic levels. It plays a crucial role in realizing the macroscopic stationarity in the presence of microscopic fluctuations as well as in the transition from non-Markovian (groupoid) dynamics to Markovian dissipative processes of state changes. The extension of the formalism to cases with spatial and internal inhomogeneity is indicated in the light of the groupoid dynamical systems and noncommutative integration theory.  相似文献   

3.
程雪涛  梁新刚 《物理学报》2014,63(19):190501-190501
分析和讨论了(火积)理论在热功转换过程的应用及其局限性.对Carnot循环的分析表明,Carnot循环中系统的(火积)是平衡的,但(火积)和熵之间不存在dG=T2dS这样的联系.对于一般热力学过程,分析表明,在热量传递到内可逆循环中间接对外做功时,现有的(火积)理论可用于系统的分析.讨论了热功转换过程分析中(火积)理论与熵理论的不同.分析表明,两个理论的分析角度及优化输出功的前提条件是不同的.熵产从可用能损失的角度分析热功转换过程,而(火积)理论则从热量势能消耗的角度.当输入系统的可用能给定或者输入系统的热量及热量进、出系统的热力学力给定时,熵产最小化对应于输出功最大;对于(火积)理论,则当输入系统的热量及热量进、出系统的温度给定时,最大(火积)损失对应于最大输出功.同时,它们各自均有局限性.当相应的前提条件不满足时,最大(火积)损失或最小熵产可能不与最大输出功相对应.  相似文献   

4.
Universal patterns such as power-law dependences, skewed distributions, tree-like structures, networks and spirals are associated with energy dispersal processes using the principle of least action. Also ubiquitous temporal courses such as sigmoid growth, bifurcations and chaos are ascribed to the decrease of free energy in the least time. Moreover, emergence of natural standards such as the common genetic code and chirality consensus of amino acids are understood to follow from the quest to maximize the dispersal of energy. Many mathematical functions that model natural patterns and processes are found as approximations of the evolutionary equation of motion that has been derived from statistical physics of open systems. The evolutionary processes can be described as flows of energy that run from high energy sources to low energy sinks in the least time. However, the equation of evolution cannot be solved in general because the flows of energy and their driving forces are inseparable. Since the energy of the system keeps changing, the paths of evolution cannot be integrated from a given initial state to a final state. Although evolutionary courses of these non-Hamiltonian systems with two or more alternative ways of dissipation cannot be predicted, the flows of energy will search and naturally select paths of least action, known as geodesics, to consume free energy in the least time. The scale-invariant natural patterns follow from this natural law that impinges on processes at all scales of space and time.  相似文献   

5.
Thermodynamics of feedback control processes, including the minimum work consumption of measurement, work extraction, and erasure processes of thermodynamic small systems have been investigated by researchers. We take systems with uncertain macroscopic states as the study object and study the feedback control processes of nonequilibrium macroscopic systems considering both the information entropy of microscopic states and macroscopic states. First we consider a system set that consists of systems with several macroscopic states and discuss the relations among the average information entropy of the system set, the thermodynamic entropy of the systems and the information entropy of macroscopic states of the systems. Then, we derive the expression of the average maximum net work obtained through feedback control, which relates to the free energy of the systems and the minimum work consumption of the measurement and erasure processes.  相似文献   

6.
The Kaplan-Yorke information dimension of phase-space attractors for two kinds of steady nonequilibrium many-body flows is evaluated. In both cases a set of Newtonian particles is considered which interacts with boundary particles. Time-averaged boundary temperatures are imposed by Nose-Hoover thermostat forces. For both kinds of nonequilibrium systems, it is demonstrated numerically that external isothermal boundaries can drive the otherwise purely Newtonian flow onto a multifractal attractor with a phase-space information dimension significantly less than that of the corresponding equilibrium flow. Thus the Gibbs' entropy of such nonequilibrium flows can diverge.  相似文献   

7.
The theorem of extremum entropy generation is related to the stochastic order of the paths inside the phase space; indeed, the system evolves, from an indistinguishable configuration to another one, on the most probable path in relation to the paths stochastic order. The result is that, at the stationary state, the entropy generation is maximal and, this maximum value is a consequence of the stochastic order of the paths in the phase space. Conversely, the stochastic order of the paths in the phase space is a consequence of the maximum of the entropy generation for the open systems at the stationary states.  相似文献   

8.
华昀峰  章林溪 《物理学报》2017,66(19):190701-190701
在许多纳米复合材料体系中熵力(entropy force)是普遍存在的,但由于熵力的存在会导致纳米颗粒的凝聚从而降低其许多性能,因此在大多数情况下熵力的存在对体系并无益处,所以研究如何减小熵力对体系的影响是非常重要的.不带角速度的自驱动粒子在熵力作用下会集聚在纳米颗粒(或者纳米棒)周围,这会对纳米颗粒(或者纳米棒)产生很大的相互作用力.对于纳米颗粒,在不带角速度的自驱动粒子体系中存在着非常大的排斥力.而对于纳米棒,由于纳米棒内外的不对称性,使得两个纳米棒之间会产生吸引-排斥转变,同时这个吸引-排斥转变与纳米棒之间的距离有关.当自驱动粒子加上一个自转角速度ω之后,熵力的作用就大大减弱,纳米颗粒不再集聚.研究结果有助于对非平衡态下纳米颗粒(或纳米棒)之间熵相互作用力的认识.  相似文献   

9.
Kinetic non-equilibrium temperatures in the several spatial directions are obtained for a flowing ideal gas under a fixed shear pressure in the maximum-entropy formalism. Equipartition is not followed: temperatures along the directions of velocity and the velocity gradient are found to increase and the temperature in the remaining direction to decrease when the viscous pressure increases. These temperatures are compared to other non-equilibrium temperatures, defined from the internal energy, the entropy, and the fluctuation–dissipation theorem.  相似文献   

10.
It is shown how both the principles of extremum of entropy production, which are often used in the study of complex systems, follow from the maximization of overall system conductivities, under appropriate constraints. In this way, the maximum rate of entropy production (MEP) occurs when all the forces in the system are kept constant. On the other hand, the minimum rate of entropy production (mEP) occurs when all the currents that cross the system are kept constant. A brief discussion on the validity of the application of the mEP and MEP principles in several cases, and in particular to the Earth’s climate is also presented.  相似文献   

11.
Entropy generation is the loss of energy in thermodynamical systems due to resistive forces,diffusion processes, radiation effects and chemical reactions. The main aim of this research is to address entropy generation due to magnetic field, nonlinear thermal radiation, viscous dissipation, thermal diffusion and nonlinear chemical reaction in the transport of viscoelastic fluid in the vicinity of a stagnation point over a lubricated disk. The conservation laws of mass and momentum along with the first law of thermodynamics and Fick's law are used to discuss the flow, heat and mass transfer, while the second law of thermodynamics is used to analyze the entropy and irreversibility. The numbers of independent variables in the modeled set of nonlinear partial differential equations are reduced using similarity variables and the resulting system is numerically approximated using the Keller box method. The effects of thermophoresis,Brownian motion and the magnetic parameter on temperature are presented for lubricated and rough disks. The local Nusselt and Sherwood numbers are documented for both linear and nonlinear thermal radiation and lubricated and rough disks. Graphical representations of the entropy generation number and Bejan number for various parameters are also shown for lubricated and rough disks. The concentration of nanoparticles at the lubricated surface reduces with the magnetic parameter and Brownian motion. The entropy generation declines for thermophoresis diffusion and Brownian motion when lubrication effects are dominant. It is concluded that both entropy generation and the magnitude of the Bejan number increase in the presence of slip. The current results present many applications in the lubrication phenomenon,heating processes, cooling of devices, thermal engineering, energy production, extrusion processes etc.  相似文献   

12.
Gilberto M. Kremer 《Physica A》2010,389(19):4018-4025
The aim of this work is to analyze the entropy, entropy flux and entropy rate of granular materials within the frameworks of the Boltzmann equation and continuum thermodynamics. It is shown that the entropy inequality for a granular gas that follows from the Boltzmann equation differs from the one of a simple fluid due to the presence of a term which can be identified as the entropy density rate. From the knowledge of a non-equilibrium distribution function-valid for processes closed to equilibrium-it is obtained that the entropy density rate is proportional to the internal energy density rate divided by the temperature, while the entropy flux is equal to the heat flux vector divided by the temperature. A thermodynamic theory of a granular material is also developed whose objective is the determination of the basic fields of mass density, momentum density and internal energy density. The constitutive laws are restricted by the principle of material frame indifference and by the entropy principle. Through the exploitation of the entropy principle with Lagrange multipliers, it is shown that the results obtained from the kinetic theory for granular gases concerning the entropy density rate and entropy flux are valid in general for processes close to equilibrium of granular materials, where linearized constitutive equations hold.  相似文献   

13.
The present research focuses the chemical aspect of entropy and exergy properties. This research represents the complement of a previous treatise already published and constitutes a set of concepts and definitions relating to the entropy–exergy relationship overarching thermal, chemical and mechanical aspects. The extended perspective here proposed aims at embracing physical and chemical disciplines, describing macroscopic or microscopic systems characterized in the domain of industrial engineering and biotechnologies. The definition of chemical exergy, based on the Carnot chemical cycle, is complementary to the definition of thermal exergy expressed by means of the Carnot thermal cycle. These properties further prove that the mechanical exergy is an additional contribution to the generalized exergy to be accounted for in any equilibrium or non-equilibrium phenomena. The objective is to evaluate all interactions between the internal system and external environment, as well as performances in energy transduction processes.  相似文献   

14.
We calculate the free energy and the entropy of a scalar field in terms of the brick-wall method on the background of the Reissner–Nordström black hole. We obtain the entropy of a scalar field is not only related to the location of an outer horizon but also is the function of the location of an inner horizon. In the approximation, the entropy is only proportional to the area of an outer horizon. The entropy expressed by location parameter of outer and inner horizon approaches zero, when the radiation temperature of a black hole approaches absolute zero. It satisfies the Nernst theorem.  相似文献   

15.
Entropy generation is analysed and obtained from the entropy balance for open systems, considering the lifetime of the natural real process. The Lagrangian approach is discussed in order to develop an analytical method to obtain the stationary states of the open irreversible systems. The stationary conditions of the open systems are obtained in relation to the entropy generation and its maximum principle. An analysis of both minimum and maximum entropy generation is proposed, suggesting that they are two different viewpoints of the same aspect: the first is related to the system, while the second is related to the interaction between the system and the environment.  相似文献   

16.
A unified view on macroscopic thermodynamics and quantum transport is presented. Thermodynamic processes with an exchange of energy between two systems necessarily involve the flow of other balancable quantities. These flows are first analyzed using a simple drift-diffusion model, which includes the thermoelectric effects, and connects the various transport coefficients to certain thermodynamic susceptibilities and a diffusion coefficient. In the second part of the paper, the connection between macroscopic thermodynamics and quantum statistics is discussed. It is proposed to employ not particles, but elementary Fermi- or Bose-systems as the elementary building blocks of ideal quantum gases. In this way, the transport not only of particles but also of entropy can be derived in a concise way, and is illustrated both for ballistic quantum wires, and for diffusive conductors. In particular, the quantum interference of entropy flow is in close correspondence to that of electric current.  相似文献   

17.
About a century ago, in the spirit of ancient atomism, the quantum of light was renamed the photon to suggest that it is the fundamental element of everything. Since the photon carries energy in its period of time, a flux of photons inexorably embodies a flow of time. Thus, time comprises periods as a trek comprises legs. The flows of quanta naturally select optimal paths (i.e., geodesics) to level out energy differences in the least amount of time. The corresponding flow equations can be written, but they cannot be solved. Since the flows affect their driving forces, affecting the flows, and so on, the forces (i.e., causes) and changes in motions (i.e., consequences) are inseparable. Thus, the future remains unpredictable. However, it is not all arbitrary but rather bounded by free energy. Eventually, when the system has attained a stationary state where forces tally, there are no causes and no consequences. Since there are no energy differences between the system and its surroundings, the quanta only orbit on and on. Thus, time does not move forward either but circulates.  相似文献   

18.
We describe a mechanism leading to positive entropy production in volume-preserving systems under nonequilibrium conditions. We consider volume-preserving systems sustaining a diffusion process like the multibaker map or the Lorentz gas. A continuous flux of particles is imposed across the system resulting in a steady gradient of concentration. In the limit where such flux boundary conditions are imposed at arbitrarily separated boundaries for a fixed gradient, the invariant measure becomes singular. For instance, in the multibaker map, the limit invariant measure has a cumulative function given in terms of the nondifferentiable Takagi function. Because of this singularity of the invariant measure, the entropy must be defined as a coarse-grained entropy instead of the fined-grained Gibbs entropy, which would require the existence of a regular measure with a density. The coarse-grained entropy production is then shown to be asymptotically positive and, moreover, given by the entropy production expected from irreversible thermodynamics.  相似文献   

19.
The chaotic hypothesis has several implications which have generated interest in the literature because of their generality and because a few exact predictions are among them. However its application to Physics problems requires attention and can lead to apparent inconsistencies. In particular there are several cases that have been considered in the literature in which singularities are built in the models: for instance when among the forces there are Lennard-Jones potentials (which are infinite in the origin) and the constraints imposed on the system do not forbid arbitrarily close approach to the singularity even though the average kinetic energy is bounded. The situation is well understood in certain special cases in which the system is subject to Gaussian noise; here the treatment of rather general singular systems is considered and the predictions of the chaotic hypothesis for such situations are derived. The main conclusion is that the chaotic hypothesis is perfectly adequate to describe the singular physical systems we consider, ıe deterministic systems with thermostat forces acting according to Gauss' principle for the constraint of constant total kinetic energy (“isokinetic Gaussian thermostats”), close and far from equilibrium. Near equilibrium it even predicts a fluctuation relation which, in deterministic cases with more general thermostat forces (ıe not necessarily of Gaussian isokinetic nature), extends recent relations obtained in situations in which the thermostatting forces satisfy Gauss' principle. This relation agrees, where expected, with the fluctuation theorem for perfectly chaotic systems. The results are compared with some recent works in the literature. PACS: 47.52.+j, 05.45.-a, 05.70.Ln, 05.20.-y  相似文献   

20.
A system of quasi-gasdynamic equations for gas flows with external forces and heat sources is constructed. An entropy balance equation is derived that demonstrates the dissipative nature of the additional terms appearing in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号