共查询到20条相似文献,搜索用时 3 毫秒
1.
The synthesis, structural, and spectroscopic characterization of (nitrosyl)iron(III) porphyrinate complexes designed to have strongly nonplanar porphyrin core conformations is reported. The species have a nitrogen-donor axial ligand trans to the nitrosyl ligand and display planar as well as highly nonplanar porphyrin core conformations. The systems were designed to test the idea, expressly discussed for the heme protein nitrophorin (Roberts, et al. Biochemistry 2001, 40, 11327), that porphyrin core distortions could lead to an unexpected, bent geometry for the FeNO group. For [Fe(OETPP)(1-MeIm)(NO)]ClO(4).C(6)H(5)Cl (H(2)OETPP = octaethyltetraphenylporphyrin), the porphyrin core is found to be severely saddled. However, this distortion has little or no effect on the geometric parameters of the coordination group: Fe-N(p) = 1.990(9) A, Fe-N(NO) = 1.650(2) A, Fe-N(L) = 1.983(2) A, and Fe-N-O = 177.0(3) degrees. For the complex [Fe(OEP)(2-MeHIm)(NO)]ClO(4).0.5CH(2)Cl(2) (H(2)OEP = octaethylporphyrin), there are two independent molecules in the asymmetric unit. The cation denoted [Fe(OEP)(2-MeHIm)(NO)](+)(pla) has a close-to-planar porphyrin core. For this cation, Fe-N(p) = 2.014(8) A, Fe-N(NO) = 1.649(2) A, Fe-N(L) = 2.053(2) A, and Fe-N-O = 175.6(2) degrees. The second cation, [Fe(OEP)(2-MeHIm)(NO)](+)(ruf), has a ruffled core: Fe-N(p) = 2.003(7) A, Fe-N(NO) = 1.648(2) A, Fe-N(L) = 2.032(2) A, and Fe-N-O = 177.4(2) degrees. Thus, there is no effect on the coordination group geometry caused by either type of nonplanar core deformation; it is unlikely that a protein engendered core deformation would cause FeNO bending either. The solid-state nitrosyl stretching frequencies of 1917 cm(-)(1) for [Fe(OEP)(2-MeHIm)(NO)]ClO(4) and 1871 cm(-)(1) for [Fe(OETPP)(1-MeIm)(NO)]ClO(4) are well within the range seen for linear Fe-N-O groups. M?ssbauer data for [Fe(OEP)(2-MeHIm)(NO)]ClO(4) confirm that the ground state is diamagnetic. In addition, the quadrupole splitting value of 1.88 mm/s and isomer shift (0.05 mm/s) at 4.2 K are similar to other (nitrosyl)iron(III) porphyrin complexes with linear Fe-N-O groups. Crystal data: [Fe(OETPP)(1-MeIm)(NO)]ClO(4).C(6)H(5)Cl, monoclinic, space group P2(1)/c, Z = 4, with a = 12.9829(6) A, b = 36.305(2) A, c = 14.0126(6) A, beta = 108.087(1) degrees; [Fe(OEP)(2-MeHIm)(NO)]ClO(4).0.5CH(2)Cl(2), triclinic, space group Ponemacr;, Z = 4, with a = 14.062(2) A, b = 16.175(3) A, c = 19.948(3) A, alpha = 69.427(3) degrees, beta = 71.504(3) degrees, gamma = 89.054(3) degrees. 相似文献
2.
This review (1) presents a summary of the distribution of fluorine in different fluid (surficial, subterranean, metamorphic, and magmatic–hydrothermal–geothermal) and solid (oceanic and continental crust, mantle, and core) domains of the Earth, and various extraterrestrial materials and bodies (meteorites, planets and moons, and the Sun); (2) it provides an estimate of the total fluorine abundance for the Earth and in its dominant reservoirs contributing to the Earth's fluorine endowment; and (3) it discusses key observations that could further improve our understanding of fluorine abundances and geochemical systematics. 相似文献
3.
Stubna A Jo DH Costas M Brenessel WW Andres H Bominaar EL Münck E Que L 《Inorganic chemistry》2004,43(10):3067-3079
Dinuclear non-heme iron clusters containing oxo, hydroxo, or carboxylato bridges are found in a number of enzymes involved in O(2) metabolism such as methane monooxygenase, ribonucleotide reductase, and fatty acid desaturases. Efforts to model structural and/or functional features of the protein-bound clusters have prompted the preparation and study of complexes that contain Fe(micro-O(H))(2)Fe cores. Here we report the structures and spectroscopic properties of a family of diiron complexes with the same tetradentate N4 ligand in one ligand topology, namely [(alpha-BPMCN)(2)Fe(II)(2)(micro-OH)(2)](CF(3)SO(3))(2) (1), [(alpha-BPMCN)(2)Fe(II)Fe(III)(micro-OH)(2)](CF(3)SO(3))(3) (2), and [(alpha-BPMCN)(2)Fe(III)(2)(micro-O)(micro-OH)](CF(3)SO(3))(3) (3) (BPMCN = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane). Stepwise one-electron oxidations of 1 to 2 and then to 3 demonstrate the versatility of the Fe(micro-O(H))(2)Fe diamond core to support a number of oxidation states with little structural rearrangement. Insight into the electronic structure of 1, 2', and 3 has been obtained from a detailed M?ssbauer investigation (2' differs from 2 in having a different complement of counterions). Mixed-valence complex 2' is ferromagnetically coupled, with J = -15 +/- 5 cm(-)(1) (H = JS(1).S(2)). For the S = (9)/(2) ground multiplet we have determined the zero-field splitting parameter, D(9/2) = -1.5 +/- 0.1 cm(-)(1), and the hyperfine parameters of the ferric and ferrous sites. For T < 12 K, the S = (9)/(2) multiplet has uncommon relaxation behavior. Thus, M(S) = -(9)/(2) <--> M(S) = +(9)/(2) ground state transition is slow while deltaM(S) = +/-1 transitions between equally signed M(S) levels are fast on the time scale of M?ssbauer spectroscopy. Below 100 K, complex 2' is trapped in the Fe(1)(III)Fe(2)(II) ground state; above this temperature, it exhibits thermally assisted electron hopping into the state Fe(1)(II)Fe(2)(III). The temperature dependence of the isomer shifts was corrected for second-order Doppler shift, obtained from the study of diferrous 1. The resultant true shifts were analyzed in a two-state hopping model. The diferric complex 3 is antiferromagnetically coupled with J = 90 +/- 15 cm(-)(1), estimated from a variable-temperature M?ssbauer analysis. 相似文献
4.
The synthesis of three new bis(imidazole)-ligated iron(II) picket fence porphyrin derivatives, [Fe(TpivPP)(1-RIm) 2] 1-RIm = 1-methyl-, 1-ethyl-, or 1-vinylimidazole) are reported. X-ray structure determinations reveal that the steric requirements of the four alpha,alpha,alpha,alpha-o-pivalamidophenyl groups lead to very restricted rotation of the imidazole ligand on the picket side of the porphyrin plane; the crowding leads to an imidazole plane orientation eclipsing an iron-porphyrin nitrogen bond. An unusual feature for these diamagnetic iron(II) species is that all three derivatives have the two axial ligands with a relative perpendicular orientation; the dihedral angles between the two imidazole planes are 77.2 degrees , 62.4 degrees , and 78.5 degrees . All three derivatives have nearly planar porphyrin cores. M?ssbauer spectroscopic characterization shows that all three derivatives have quadrupole splitting constants around 1.00 mm/s at 100K. 相似文献
5.
6.
Sayari A Belmabkhout Y Da'na E 《Langmuir : the ACS journal of surfaces and colloids》2012,28(9):4241-4247
Adsorption of CO(2) was investigated on a series of primary, secondary, and tertiary monoamine-grafted pore-expanded mesoporous MCM-41 silicas, referred to as pMONO, sMONO, and tMONO, respectively. The pMONO adsorbent showed the highest CO(2) adsorption capacity, followed by sMONO, whereas tMONO exhibited hardly any CO(2) uptake. As for the stability in the presence of dry CO(2), we showed in a previous contribution [J. Am. Chem. Soc.2010, 132, 6312-6314] that amine-supported materials deactivate in the presence of dry CO(2) via the formation of urea linkages. Here, we showed that only primary amines suffered extensive loss in CO(2) uptake, whereas secondary and tertiary amines were stable even at temperature as high as 200 °C. The difference in the stability of primary vs secondary and tertiary amines was associated with the occurrence of isocyanate as intermediate species toward the formation of urea groups, since only primary amines can be precursors to isocyanate in the presence of CO(2). However, using a grafted propyldiethylenetriamine containing both primary and secondary amines, we demonstrated that while primary amines gave rise to isocyanate, the latter can react with either primary or secondary amines to generate di- and trisubstituted ureas, leading to deactivation of secondary amines as well. 相似文献
7.
In order to study the bonding of sulfoxides to iron(II) porphyrinates, an equilibrium study of Fe(TPP) with tetramethylenesulfoxide (TMSO) has been performed. UV-vis spectra at different concentrations of TMSO have shown distinct character belonging to three species: four-coordinate Fe(II)(TPP), five-coordinate [Fe(II)(TPP)(TMSO)], and six-coordinate [Fe(II)(TPP)(TMSO)2]. The isosbestic points for the low TMSO concentrations suggest that the equilibrium constant K1 is much larger than K2. Analysis of spectral data by the nonlinear least-squares program SQUAD gives K1 = 267 and K2 approximately 1. Even though the five-coordinate species is the dominant species under the synthetic conditions, only the six-coordinate species was crystallized and characterized by an X-ray diffraction study. [Fe(TPP)(TMSO)2] (C52H44Fe-N4O2S2): monoclinic, P2(1)/c, a = 11.2580(3) A, b = 15.9262(5) A, c = 12.3930(4) A, beta = 116.246(1) degrees , V = 1992.95(10) A3, Z = 2. X-ray crystallography demonstrates the complex is a low-spin bis-TMSO ligated species. The average Fe-Np distance is 1.999(4) A. The most important feature is that TMSO is coordinated to iron(II) by the sulfur donors, not oxygen. The Fe-S distance is 2.2220(3) A. 相似文献
8.
S. Iijima S. Koner F. Mizutani 《Journal of Radioanalytical and Nuclear Chemistry》1999,239(2):245-249
The internal magnetic field (H n ) at57Fe nucleus was investigated for the mixed crystals, NBu4[Fe(II) x Mn(II)1-x Cr(III) (ox)3] (x=0.03?1) and NBu4[Fe(II) x Ni(II)1-x Fe(III)(ox)3]) (x=0?1) using Mössbauer spectroscopy, where NBu4/+=tetra(n-butyl)ammonium ion and ox2?=oxalate ion. With the decrease ofx, the direction ofH n at Fe(II) in NBu4[Fe(II) x Mn(II)1-x Cr(III)(ox)3] changed gradually from parallel to perpendicular, to the honeycomb layers consisting of an alternate array of the bivalent and tervalent ions through ox2? ligands. A variation of ca. 50° in direction was observed for theH n at Fe(III) in NBu4[Fe(II) x Ni(II)1-x Fe(III)(ox)3]. 相似文献
9.
Ping ZHENG Wei Lin SUN* Zhi Quan SHEN Department of Polymer Science Engineering Zhejiang University Hangzhou 《中国化学快报》2005,(10)
In recent years,the organic ferromagnets have drawn growing attention due to their characteristics of structural diversities,low density,and readily processing1-3.Design and synthesis of magnetic polymers are one of great challenges in today′s magnetic material research,and some significant achievements have been made in this field4,5.In this article,we describe the synthesis of acrylamide-type polymer with pendent thiazolyl groups(Scheme1).The as-prepared polymer exhibited better solubility … 相似文献
10.
Georgopoulou AN Adam R Raptopoulou CP Psycharis V Ballesteros R Abarca B Boudalis AK 《Dalton transactions (Cambridge, England : 2003)》2011,40(32):8199-8205
Complex [Fe(II)Gd(III){pyCO(OEt)pyCOH(OEt)py}(3)](ClO(4))(2) (1) crystallizes in the Cc space group and contains one hexacoordinate ferrous ion and one enneacoordinate Gd(III) ion. Complex [Fe(2)(II)Gd(III){pyCO(OEt)py}(4)(NO(3))(H(2)O)][Gd(NO(3))(5)](0.5)(ClO(4)) (2) crystallizes in the C2/c space group and contains two hexacoordinate ferrous ions and one octacoordinate Gd(III) ion. Both complexes have been prepared by the metal-assisted ethanolysis of ligands di-2,6-(2-pyridylcarbonyl)pyridine (pyCOpyCOpy, dpcp) and di-2-pyridyl ketone ((py)(2)CO, dpk), which exhibit similar structures. M?ssbauer spectroscopic studies of 2 revealed the presence of two quadrupole-split doublets of equal intensities, each assigned to a ferrous site. These doublets exhibit similar isomer shifts (δ(1) = 1.14 mm s(-1), δ(2) = 1.11 mm s(-1)) but quite different quadrupole splittings (ΔE(Q1) = 3.55 mm s(-1), ΔE(Q2) = 2.74 mm s(-1)). Magnetic studies revealed weak ferromagnetic Fe(II)-Gd(III) interactions for both complexes (J(FeGd) = +0.68 cm(-1), D(Fe) = 12.0 cm(-1) for 1 and J(FeGd) = +0.03 cm(-1), J(FeFe) = -1.73 cm(-1) for 2, according to the -JS(i)S(j) spin-Hamiltonian formalism). 相似文献
11.
Mikhailov O. V. Tatarintseva T. B. Naumkina N. I. Lygina T. Z. 《Russian Journal of Coordination Chemistry》2004,30(9):639-647
Ion-exchange reactions M2+ Fe3+ and Fe3+ M2+ (M = Mn, Co, Ni, Cu, Zn, Cd) were studied in metal(II) hexacyanoferrate(II) gelatin-immobilized matrices M2[Fe(CN)6] in contact with aqueous FeCl3 solutions and Fe4[Fe(CN)6]3 in contact with aqueous MCl2 solutions. It was shown that in both cases, M2+ was replaced by Fe3+ and Fe3+ was replaced by M2+ to some extent, but no complete replacement was observed in the M2[Fe(CN)6]–FeCl3 or Fe4[Fe(CN)6]3–MCl2 systems under study. No electrophilic substitution Fe3+ Mn2+ was found to occur in any noticeable degree during the contact of Fe4[Fe(CN)6]3 with aqueous MnCl2 solutions even when this contact occurred for 1 h and longer. 相似文献
12.
This communication describes the in situ combination of Al(III) and Zn(II) with resveratrol, and evaluation of the antioxidant power of the novel species via DPPH* assay. The formation of the complexes in aqueous medium was verified by Job's method, using fluorescence spectroscopy. The metal/ligand stoichiometry for the Zn(II)/resveratrol complex was found to be 1:2 and, for the Al(III)/resveratrol complex two preferential species were formed with 1:1 and 3:1 stoichiometries. The compounds were also studied by 1H and 13C NMR spectroscopy. Their antioxidant activity, evaluated by a scavenging assay using DPPH* (1,1-diphenyl-2-picrylhydrazyl), demonstrated that the combined species are more effective free radical scavengers than free resveratrol. The electrochemical behavior of the complexes revealed the occurrence of irreversible oxidation processes, which take place at a lower potential than that observed with free resveratrol. These results indicate that metallic complexes of this natural product have a higher antioxidant power than resveratrol alone. 相似文献
13.
A new cyanide-bridged heterobimetallic Fe(III)–Mn(II) complex {[MnL][FebpdBrb]} [FebpdBrb]n· 2nH2O has been synthesized by using pyridinecarboxamide trans-dicyanideiron as the building block. The X-ray diffraction analysis has revealed the one-dimensional infinite structure of the complex consisting of the alternating [Mn(L)]2+ and [Fe(bpdBrb)(CN)2]– units forming a cyanide-bridged cationic polymeric chain, with [Fe(bpdBrb)(CN)2]– as the free anions. The antiferromagnetic coupling between the neighboring Fe(III) and Mn(II) ions through the bridging cyanide group has been revealed. The magnetic coupling constant has been determined as of J =–3.17 cm–1. 相似文献
14.
《Journal of Inorganic and Nuclear Chemistry》1980,42(7):977-983
A number of chelates of the transition metal ions Fe2+, Fe3+, Co2+, Ni2+, Cu2+ and Pd2+ with 2′-hydroxy - 3′ - bromo - 4 - methoxy - 5′ - methylchalkone oxime (HBMMCO) have been synthesised. Attempts have been made to assign their probable structures on the basis of elemental analysis, molar conductance, thermal analysis, absorption and reflectance spectra, IR spectra and magnetic data. The magnetic susceptibility of the Co(II) chelate follows the Curie-Weiss law and the observed temperature dependance is in favour of an octahedral configuration. The Ni(II) chelate exhibits a 6-coordinate octahedral structure, whilst distorted octahedral geometry is suggested for the Cu(II) chelate. The Fe(II) and Fe(III) chelates have high spin octahedral configurations and the dimagnetic behaviour of the Pd(II) complex indicates a square planer configuration. 相似文献
15.
Shmelev M. A. Gogoleva N. V. Kuznetsova G. N. Kiskin M. A. Voronina Yu. K. Yakushev I. A. Ivanova T. M. Nelyubina Yu. V. Sidorov A. A. Eremenko I. L. 《Russian Journal of Coordination Chemistry》2020,46(8):557-572
Russian Journal of Coordination Chemistry - The reactions of cadmium(II) and europium(III) pentafluorobenzoates ([Cd(Pfbz) $$left( {{{{text{H}}}_{{text{2}}}}{text{O}}} right)_{{text{4}}}^{ +... 相似文献
16.
How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction? 总被引:2,自引:0,他引:2
Pédrot M Le Boudec A Davranche M Dia A Henin O 《Journal of colloid and interface science》2011,359(1):75-85
Few studies have so far examined the kinetics and extent of the formation of Fe-colloids in the presence of natural organic ligands. The present study used an experimental approach to investigate the rate and amount of colloidal Fe formed in presence of humic substances, by gradually oxidizing Fe(II) at pH 6.5 with or without humic substances (HS) (in this case, humic acid--HA and fulvic acid--FA). Without HS, micronic aggregates (0.1-1 μm diameter) of nano-lepidocrocite is obtained, whereas, in a humic-rich medium (HA and FA suspensions at 60 and 55 ppm of DOC respectively), nanometer-sized Fe particles are formed trapped in an organic matrix. A proportion of iron is not found to contribute to the formation of nanoparticles since iron is complexed to HS as Fe(II) or Fe(III). Humic substances tend to (i) decrease the Fe oxidation and hydrolysis, and (ii) promote nanometer-sized Fe oxide formation by both inhibiting the development of hydroxide nuclei and reducing the aggregation of Fe nanoparticles. Bioreduction experiments demonstrate that bacteria (Shewanella putrefaciens CIP 80.40 T) are able to use Fe nanoparticles associated with organic matter about eight times faster than in the case of nano-lepidocrocite. This increase in bioreduction rate appears to be related to the presence of humic acids that (i) indirectly control the size, shape and density of oxyhydroxides and (ii) directly enhance biological reduction of nanoparticles by electron shuttling and Fe complexation. These results suggest that, in wetlands but also elsewhere where mixed organic matter-Fe colloids occur, Fe nanoparticles closely associated with organic matter represent a bioavailable Fe source much more accessible for microfauna than do crystallized Fe oxyhydroxides. 相似文献
17.
N R Walker R R Wright P E Barran J N Murrell A J Stace 《Journal of the American Chemical Society》2001,123(18):4223-4227
Experiments conducted in the gas phase have led to the formation of a series of stable gold(II) complexes with nitrogen- and oxygen-containing ligands. Such complexes are very rare in condensed-phase chemistry. However, there is also a significant group of potential ligands, for example, H2O and NH3, for which stable complexes could not be formed. There are strong similarities between these observations and earlier results presented for silver(II), but both metal ions behave markedly different from copper(II). As a group the majority of successful gold(II) ligands are characterized by being good sigma donor-pi acceptor molecules; however, it is also possible to understand the ability of individual ligands to stabilize the metal ion in terms of a simple electrostatic model. Application of the latter reveals a semiquantitative trend between the physical properties of a ligand, e.g. ionization energy, dipole moment, and polarizability, and the ligand's ability to stabilize either Cu(II), Ag(II), or Au(II). The model successfully accounts for the preference of Cu(II) for aqueous chemistry, in comparison to the complete absence of such behavior on the part of Ag(II) and Au(II). Ligands from recent examples of stable condensed-phase gold(II) complexes appear to meet at least one of the criteria identified from the model. 相似文献
18.
The catalytic hydrolysis of a methionyl-peptide substrate by a methionine aminopeptidase active site model cluster was investigated at the DF/B3LYP level of theory, in the gas-phase and in the protein environment. Zn(II), Co(II), Mn(II), and Fe(II) transition metals were examined as the potential catalytic metals of this enzyme involved in protein maturation. Two different mechanisms in which Glu204 was present as protonated or deprotonated residue were considered. The energetic profiles show lower barriers as the protonated glutamate is involved. The rate-determining step of the hydrolysis reaction is always the nucleophilic addition of the hydroxide on substrate carbon, followed by less energetically demanding methionine-peptide C-N bond scission. The lowest activation energy is obtained in the case of zinc dication while the other metals show very high energetic barriers, so that methionine aminopeptidase can be in principle recognized as a dizinc enzyme. 相似文献
19.
DeSieno MA van der Donk WA Zhao H 《Chemical communications (Cambridge, England)》2011,47(36):10025-10027
The Fe(II) and α-ketoglutarate-dependent hydroxylase FrbJ was previously demonstrated to utilize FR-900098 synthesizing a second phosphonate FR-33289. Here we assessed its ability to hydroxylate other possible substrates, generating a library of potential antimalarial compounds. Through a series of bioassays and in vitro experiments, we identified two new antimalarials. 相似文献
20.
By employing trans-dicyano or pentacyanometalate as building block and using a bicompartimental Schiffbase based manganese(III) compound as assemble segment, two new cyanide-bridged heterometallic Fe(III)–Mn(III) complexes {[Mn(L)(H2O)][Febpb(CN)2]}·2CH3OH (1) and {[Mn(L)(H2O)]2··[Fe(CN)5NO]} (2) (bpb2– = 1,2-bis(pyridine-2-carboxamido)benzenate, L = N,N'-ethylene-bis(3-ethoxysalicylideneiminate) have been synthesized and characterized by elemental analysis, IR spectroscopy and X-ray structure determination. Single X-ray diffraction analysis reveals binuclear FeMn and trinuclear FeMn2 structure, respectively, in which the cyanide precursor acts as mono- or bidentate ligand to connect the Mn(III) Schiff-base unit(s). Furthermore, these two complexes are self-complementary through coordinated aqua ligands from one complex and the free O4 compartments from the neighboring complex, giving dimeric and 1D single chain supramolecular structure. Investigation of the magnetic susceptibility of 1 reveals weak antiferromagnetic coupling between the adjacent Mn(III) ions. Based on the binuclear FeMn model, best fit of the magnetic susceptibilities of 1 leads to the magnetic coupling constants J =–1.37 cm–1 and zJ′ =–0.72 cm–1 (1). 相似文献