首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors performed ionic liquid-based microwave-assisted liquid-liquid microextraction(IL-based MALLME) coupled with high performance liquid chromatographic separation for the determination of 6 sulfonamides (SAs) from animal oils. The target analytes were extracted from animal oil samples with sodium hydroxide solution containing 1-butyl-3-methylimidazolium tetrafluoroborateand as the extraction solvent under microwave irradiation. The experimental parameters of the IL-based MALLME, including types of ILs, volume of IL, amount of ion-pairing agent(NH4PF6), pH value of sample solution, and extraction temperature and time were evaluated. The limits of detection and quantification obtained were in a range of 0.4―0.5 μg/kg and a range of 1.2―1.8 μg/kg, respectively. The accuracy of the method was evaluated by analyzing five spiked animal oil samples at two fortified levels(5 and 50 μg/kg), and the recoveries of SAs varied from 81.4% to 114.5% with relative standard deviations ranging from 0.8% to 9.0%.  相似文献   

2.
The ultrasound‐assisted ionic liquid foam flotation solid‐phase extraction of sulfonylurea herbicides in milk was developed and validated. The proteins and lipids were isolated from the sample matrix by adding salt and adjusting the pH value. The target analytes eluted from the solid‐phase extraction cartridge were determined by high‐performance liquid chromatography. Some experimental parameters, including the pH value of sample solution, amount of NaCl, ionic liquid type, extraction time, flow rate of carrier gas, flotation time, and solid‐phase extraction cartridge type were investigated and optimized. Under the optimized experimental conditions, the limits of detection for metsulfuron, pyrazosulfuron, chlorimuron‐ethyl, and nicosulfuron were 1.3, 0.6, 0.7, and 1.1 μg/L, respectively. When the present method was applied to the analysis of milk samples the recoveries of the analytes ranged from 84.3 to 105.2% and relative standard deviations were >5.7%.  相似文献   

3.
Xu X  Su R  Zhao X  Liu Z  Zhang Y  Li D  Li X  Zhang H  Wang Z 《Analytica chimica acta》2011,707(1-2):92-99
The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n=5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination of SAs in liquid samples.  相似文献   

4.
Matrix solid‐phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High‐performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid‐phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid‐phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion‐pairing agent (NH4PF6), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3–13.4 μg/kg.  相似文献   

5.
摘要 采用离子液体均匀提取-高效液相色谱法测定了参附注射液中苯甲酰乌头碱(BA)、苯甲酰新乌头碱(BM)、苯甲酰次乌头碱(BH)和苯甲酰脱氧乌头碱(BD)的含量,通过优化离子液体的用量,样品溶液的pH值,提取时间和盐浓度等参数,确定最佳提取条件为:pH为中性,盐浓度为5%,采用0.058g的[C6Mim][ BF4]和0.26g的 NH4PF6作为提取剂,提取1min,可有效地将目标物从5mL注射液中提取出来。在此实验条件下测得四种单酯型乌头碱的检测限分别为45.5(BM),19.8(BA),26.3(BH)和12.2(BD)μg L-1,对参附注射液样品进行分析,加样回收率范围在93.74-107.91%,RSD值均小于4.34%。  相似文献   

6.
Zhang HF  Shi YP 《The Analyst》2012,137(4):910-916
A new solid-phase extraction mode for magnetic retrieval of chitosan combined with high-performance liquid chromatography-diode array detection was proposed for the pre-concentration and determination of flavonoids in green tea beverage samples. In the experiment, chitosan was used as sorbents for the extraction of target analytes; after completion of the extraction process, Fe(3)O(4) nanoparticles acted as carrier to retrieve chitosan from the sample solution. Some important parameters influenced extraction efficiency of flavonoids, including the extraction mode, amounts of chitosan, pH of sample solution, extraction time, salt addition, amounts of Fe(3)O(4) nanoparticles, desorption solvent and desroption time, were optimized. Under the optimum conditions, the recoveries of analytes done on samples spiked with the target analytes were between 96.4% and 108.6%; relative standard deviations ranged from 0.6% to 8.7%. The correlation coefficients varied from 0.9917 to 0.9988. The limits of detection ranged from 5.4 to 16.8 ng mL(-1) at a signal-to-noise ratio of 3. All four different brands of green tea beverage samples were successfully analyzed by the proposed method.  相似文献   

7.
Shiqian Gao 《Talanta》2010,82(4):1371-99
The determination of phenylurea and triazine herbicides in milk based on microwave assisted ionic liquid microextraction (MAILME) coupled with high-performance liquid chromatographic separation was described. The experimental parameters of the MAILE, including type and amount of ionic liquid, microwave extraction power, extraction time and salt concentration in sample, were evaluated by a univariate method and orthogonal screening. When 60 μL of [C6MIM][PF6] was used as extraction solvent the target compounds can be isolated from the 4 mL of milk. The MAILME is quick (7 min) and simple. The detection limits for isoproturon, monolinuron, linuron, propazine, prometryne, terbutryn and trietazine are 0.46, 0.78, 1.00, 1.21, 1.96, 0.84 and 1.28 μg L−1, respectively. The proposed method was applied to the analysis of milk samples and the recoveries of the analytes ranged from 88.4 to 117.9% and relative standard deviations were lower than7.43%.  相似文献   

8.
An electromembrane extraction procedure coupled with HPLC and visible detection was applied for the extraction of three textile azo dyes as organic salts. The extraction parameters such as extraction time, applied voltage, pH range, and concentration of salt added were optimized. A driving force of 60 V was applied to extract the analytes through 2‐nitrophenyl octyl ether, used as the supported liquid membrane, into a neutral aqueous solution. This method required 20 min extraction time from a neutral sample solution. The proposed microextraction technique provided good linearity with correlation coefficients from 0.996 to 0.998 over a concentration range of 1.0–1000.0 ng/mL. The LODs of dyes were 0.30–0.75 ng/mL, while the reproducibility ranged from 6.7 to 12.9% (n = 6). Also, enrichment factors of 96–162 that corresponded to the recoveries ranging from 48 to 81% were achieved. Finally, the application of this new method was demonstrated on wastewater samples and some plants grown in contaminated environments. Excellent selectivity was obtained as no interfering peaks were detected.  相似文献   

9.
A simple CE–UV method was developed for the simultaneous determination of ciprofloxacin, norfloxacin, and ofloxacin in milk samples. The optimum separation was obtained using a 20 mM ammonium dihydrogenphosphate solution with 2 mM cetyltrimethylammonium bromide at pH 3.0 as the BGE. Satisfactory resolution for structurally very similar analytes, like norfloxacin and ciprofloxacin, was achieved without including any organic solvent. Milk samples were prepared using a simple/extraction procedure based on acidic protein precipitation followed by an SPE step using only 5 mg of multiwalled carbon nanotubes as the sorbent material. The LODs for the three compounds were between 7.5 and 11.6 μg/L and the RSDs for the peak areas were between 2.6 and 4.9%. The complete method was applied to spiked real milk samples with satisfactory recoveries for all analytes (84–106%).  相似文献   

10.
Surfactant cetyltrimethylammonium bromide enhanced molybdenum disulfide was used as an adsorbent in pipette‐tip solid‐phase extraction for the pretreatment of sulfonamides in environmental water samples. The factors affecting the extraction recoveries of the analytes, including the sample pH value, amount of sorbent, type and volume of eluent solution, and salt concentration were optimized. This pipette‐tip solid‐phase extraction method demonstrated good linearity (0.05–10.0 µg/L) with a coefficient of determination of 0.9984–0.9996, limit of detection (0.2–0.4 ng/L) and limit of quantitation (0.5–1.0 ng/L), good analyte recoveries (76–91), and acceptable limit of quantitation (<10%) under the optimized conditions. These results indicated that the proposed method was a good tool for monitoring sulfonamides in environmental water samples.  相似文献   

11.
A supramolecular solvent-based dispersive liquid-liquid microextraction was proposed for the extraction and determination of lignans in Forsythiae Fructus combined with high-performance liquid chromatography. The supramolecular solvent, consisting of tetrabutylammonium bromide and n-hexanol, was mixed with the sample solution to extract the analytes by a vortex. After accomplishing the extraction, the extraction phase was separated by centrifugation and collected for high-performance liquid chromatography analysis. In this work, the important extraction variables such as the type and amount of extraction solvent, pH and salt amount in the sample phase, and extraction time were optimized. The synthesis of supramolecular solvent was studied and its microstructure was characterized by transmission electron microscopy. Under the optimal conditions, the analytes’ enrichment factors were between 6 and 170 for the proposed procedure. Satisfactory linear ranges (r ≥ 0.99), detection limits (0.025–0.4 ng/ml), precisions (< 9.2%), and accuracies (recoveries: 96.5%–104.8%) were obtained. The method has been successfully applied to the preconcentration of lignans in Forsythiae Fructus with simple and rapid operation, low cost, and environmental friendliness.  相似文献   

12.
Ren R  Wang Y  Zhang R  Gao S  Zhang H  Yu A 《Talanta》2011,83(5):6259-1400
A new method was developed for the determination of monolinuron, propazine, linuron, and prebane in environmental water samples. The solvent (ionic liquid) impregnated resin (IL-SIR)-based extraction coupled with dynamic ultrasonic desorption (DUSD) was applied to the separation and concentration of the analytes. The high performance liquid chromatography (HPLC) was applied to the determination of the analytes. The ionic liquid [C6MIM][PF6] was immobilized on Diaion HP20 resin by immersing the resin in ethanol solution containing [C6MIM][PF6]. The effect of extraction parameters, including pH value of sample solution, salt concentration in sample and extraction time, and elution conditions, including the concentration of ethanol in elution solvent, the flow rate of elution solvent and the ultrasonic power, were examined and optimized. The limits of detection and quantification for the analytes were in the range of 0.15-0.29 μg L−1 and 0.51-0.98 μg L−1, respectively. Some environmental water samples were analyzed and the analytical results were satisfactory.  相似文献   

13.
The extraction of amphoteric aromatic amines from water samples is difficult because of their high polarity. For the enrichment of aminobenzoic acids and aminotoluenesulfonic acids with solid-phase extraction, graphitized carbon black (GCB) was investigated. With few exceptions, the 12 analytes studied were extracted with recoveries > 60% at neutral or basic pH, whereas at pH 3 low recoveries were obtained. Addition of salt caused a decrease of about 50% in recoveries, addition of standard humic acid a decrease of about 20%. The capacity of GCB cartridges was determined with the breakthrough volume for 4-aminobenzoic acid at different concentrations to be 0.5–1% (w/w).  相似文献   

14.
A poly (vinylpyridine-ethylene dimethacrylate) monolithic material was synthesized and selected as stir bar sorptive extraction (SBSE) medium. The influences of polymerization conditions on the extraction efficiency were investigated using phenol and p-nitrophenol as target analytes. Based on this, six strongly polar phenols in water were directly concentrated by the new SBSE and determined with high performance liquid chromatography equipped with diode array detector. To achieve the optimum extraction performance, several main parameters, including extraction and desorption time, pH value and contents of inorganic salt in the sample matrix were investigated. The method showed good linearity and acceptable recoveries, as well as advantages such as sensitivity, simplicity, low cost and high feasibility. The proposed method was successfully applied to the determination of phenolic compounds in lake and sea waters.  相似文献   

15.
The liquid-liquid microextraction (LLME) was developed for extracting sudan dyes from red wine and fruit juice. Room temperature ionic liquid was used as the extraction solvent. The target analytes were determined by high-performance liquid chromatography. The extraction parameters were optimized. The optimal conditions are as follows: volume of [C(6)MIM][PF(6)] 50 μL; the extraction time 10 min; pH value of the sample solution 7.0; NaCl concentration in sample solution 5%. The extraction recoveries for the analytes in red wine and fruit samples are 86.79-108.28 and 68.54-85.66%, whereas RSDs are 1.42-5.12 and 1.43-6.19%, respectively. The limits of detection and quantification were 0.428 and 1.426 ng/mL for sudan I, 0.938 and 3.127 ng/mL for sudan II, 1.334 and 4.445 ng/mL for sudan III, 1.454 and 4.846 ng/mL for sudan IV, respectively. Compared with conventional liquid-liquid extraction (CLLE) and ultrasonic extraction (UE), when LLME was applied, the sample amount was less (LLME: 4 mL; CLLE: 10 mL; UE: 10 mL), the extraction time was shorter (LLME: 15 min; CLLE: 110 min; UE: 50 min) and the extraction solvent amount was less (LLME: 0.05 mL IL; CLLE: 15 mL hexane; UE: 20 mL hexane). The proposed method offers a simple, rapid and efficient sample preparation for determining sudan dyes in red wine and fruit juice samples.  相似文献   

16.
A green, rapid and precise sample pretreatment technique, IL-based UAE(ionic liquid-based ultrasonic-assisted extraction), was coupled with high-performance liquid chromatographic separation to identify the main effective components in Schisandra sphenanthera(S. sphenanthera) and Schisandra chinensis(S. chinensis) including schisantherin A, schisandrin A, and deoxyschizandrin. Four different types of ionic liquids have been investigated, finally[C6MIM] [BF4] was used as the extraction solvent. A powder form of S. sphenanthera and S. chinensis was mixed with the[C6MIM] [BF4] to produce a suspension. This suspension was ultrasonically extracted in a water bath at room temperature. Several of the process parameters were optimized, including the type of ionic liquid used and its volume, the sample amount, the size of the sample particle, the extraction time, etc. HPLC calibration curves were established for all the analytes and proved to be linear(r>0.9999). The lowest detection level for schisandrin A was 0.12 μg/mL, for schisantherin A was 0.08 μg/mL, and for deoxyschizandrin was 0.10 μg/mL. The recoveries of the target compounds were from 74.19% to 109.33%. The standard deviations for detection were generally no more than 6.31%. In contrast to conventional extraction methods, the IL-based UAE did not involve volatile organic volatile solvents, and the analysis time, required sample and solvent volumes were also lower than those of the conventional techniques.  相似文献   

17.
张丽媛  姚笛  李娜  张寒琦  于爱民 《色谱》2015,33(7):753-758
建立了婴儿配方奶粉中三嗪类除草剂的均相液液微萃取-高效液相色谱分析方法。以离子液体为液液微萃取溶剂,Eclipse XDB-C18为色谱柱,乙腈和水为流动相梯度洗脱分离。详细研究了液液微萃取条件对实验结果的影响。在最优实验条件下,三嗪类除草剂的标准曲线呈良好的线性(r≥0.9992),草净津、敌草净、特丁通、特丁津和异戊乙净的检出限分别是12.1、13.8、11.8、14.6和13.7 μg/kg;婴儿配方奶粉中的加标回收率为92.2%~103.2%,相对标准偏差低于6%。该方法灵敏度高、操作简单,适用于奶粉样品中三嗪类除草剂残留的检测。  相似文献   

18.
In this study, a new pH‐assisted homogeneous liquid–liquid microextraction combined with HPLC with UV detection was developed for the determination of chlorophenols in water samples. In this approach, bis(2‐ethylhexyl) phosphate was used for the first time as the low‐density extraction solvent. In particular, 60 μL of bis(2‐ethylhexyl) phosphate was injected into the sample solution (5 mL) and dissolved completely in the sample solution while the pH was increased to 9. Afterwards, the pH of the sample solution was lowered to 1, and a cloudy solution was formed. At this stage, hydrophobic interactions between the analytes and the long double hydrocarbon chains of extraction solvent were expected to be the main forces driving extraction. A series of parameters that influence extraction were investigated systematically. Under the optimized conditions, the LODs and LOQs for the chlorophenols were 1.4–2.7 and 4.7–9.1 ng/mL, respectively. RSDs based on five replicate extraction of 100 ng/mL of each chlorophenols were <4.7% for intraday and 7.4% for interday precision. This method has been also successfully applied to analyze real water samples at two different spiked concentrations, and satisfactory recoveries were achieved.  相似文献   

19.
Electrolysis is omnipresent in all electrochemical processes including electromembrane extraction (EME). The effects of electrolysis on quantitative aspects of EME were comprehensively evaluated for a set of acidic (substituted phenols) and basic (basic drugs) analytes. EMEs were carried out across supported liquid membranes formed by 1-ethyl-2-nitrobenzene at standard EME conditions, i.e., acidic analytes were extracted from alkaline into alkaline solutions and basic analytes were extracted from acidic into acidic solutions. Electric potential applied across the EME systems was 50 V and extraction recoveries of analytes as well as pH values of donor and acceptor solutions were determined after each EME. It has been proven that electrolysis plays a more significant role than has ever been thought before in EME. Electrolytically produced H+ and OH ions had a significant effect on pH values of acceptor solutions and variations of up to 8.5 pH units were obtained at standard EME conditions. pH values of donor solutions were affected only negligibly due to their significantly higher volumes. The observed variations in pH values of acceptor solutions had fatal consequences on quantitative EME results of weak and medium strong acidic/basic analytes. A direct relation was observed between the decrease in extraction recoveries of the analytes, their pKa values and the acceptor solution pH values. Acceptor solutions consisting of high concentrations of weak bases or acids were thus proposed as suitable EME operational solutions since they efficiently eliminated the electrolytically induced pH variations, offered stable EME performances and were easily compatible with subsequent analytical methods.  相似文献   

20.
A new method was developed for the determination of cadmium in water samples using ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction (IL-based USA-DLLME) followed by electrothermal atomic absorption spectrometry (ETAAS). The IL-based USA-DLLME procedure is free of volatile organic solvents, and there is no need for a dispersive solvent, in contrast to conventional DLLME. The ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF6), was quickly disrupted by an ultrasonic probe for 1 min and dispersed in water samples like a cloud. At this stage, a hydrophobic cadmium–DDTC complex was formed and extracted into the fine droplets of HMIMPF6. After centrifugation, the concentration of the enriched cadmium in the sedimented phase was determined by ETAAS. Some effective parameters of the complex formation and microextraction, such as the concentration of the chelating agent, the pH, the volume of the extraction solvent, the extraction time, and the salt effect, have been optimized. Under optimal conditions, a high extraction efficiency and selectivity were reached for the extraction of 1.0 ng of cadmium in 10.0 mL of water solution employing 73 µL of HMIMPF6 as the extraction solvent. The enrichment factor of the method is 67. The detection limit was 7.4 ng L− 1, and the characteristic mass (m0, 0.0044 absorbance) of the proposed method was 0.02 pg for cadmium (Cd). The relative standard deviation (RSD) for 11 replicates of 50 ng L− 1 Cd was 3.3%. The method was applied to the analysis of tap, well, river, and lake water samples and the Environmental Water Reference Material GSBZ 50009-88 (200921). The recoveries of spiked samples were in the range of 87.2–106%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号