首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Treatment of 2,2,4,4-tetramethyl-1,5-diphenyl-6,7-dithiabicyclo[3.1.1]heptane 6-endo-oxide ( 2 ) with Montmorillonitc K 10 in dichloromethane gave 2,2,-4,4-tetramethyl-1,5-diphenyl-7,8-dithia-6-oxabicyclo-[3.2.1]octane ( 6 ) (11%) with recovery of 2 (87%). Under similar reaction conditions, the 6-exo-oxide 7 and the sulfenate 6 gave a mixture of 6 (21%), 2 (67%), and 7 (9%) and a mixture of 2 (89%) and 6 (9%), respectively. These results indicate the relative thermodynamic stabilities of the three compounds to be 2 > 6 > 7 . PM3 calculations on these compounds showed the heats of formation (kcal/mol) to be in the following order: 6 (44.12783), 2 (57.46721), and 7 (59.37918). The driving force of this unusual 1,2-rearrangement of 2 and 7 to 6 would be the release of the ring strain of the bicyclo[3.1.1]heptane system of 2 and 7 by ring expansion.  相似文献   

2.
13C chemical shifts of more than fifty bicyclo[3.2.1]octane and bicyclo[2.2.1]heptane derivatives (hydrocarbons, alcohols, ketones and esters) have been determined. The usefulness of ethyl derivatives for the assignment of close 13C chemical shifts in bicyclic methyl derivatives is shown both for the bicyclo[3.2.1]octane and bicyclo[2.2.1]heptane series. Comparison of substituent effects on α-, β-, γ- and δ-carbons in both series of compounds shows remarkable differences in steric interactions. In contrast to the rigid bicyclo[2.2.1]heptane system, both chair and boat conformations can be predominant in the bicyclo[3.2.1]octane series with the conformationally flexible 6-membered ring.  相似文献   

3.
Bridgehead C-H bond dissociation enthalpies of 105.7 ± 2.0, 102.9 ± 1.7, and 102.4 ± 1.9 kcal mol(-1) for bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, and adamantane, respectively, were determined in the gas phase by making use of a thermodynamic cycle (i.e., BDE(R-H) = ΔH°(acid)(H-X) - IE(H(·)) + EA(X(·))). These results are in good accord with high-level G3 theory calculations, and the experimental values along with G3 predictions for bicyclo[1.1.1]pentane, bicyclo[2.1.1]hexane, bicyclo[3.1.1]heptane, and bicyclo[4.2.1]nonane were found to correlate with the flexibility of the ring system. Rare examples of alkyl anions in the gas phase are also provided.  相似文献   

4.
Intramolecular [2 + 2] photocycloaddition of alkenes with a furano sugar placed between them have been investigated under both copper(I)-catalyzed and sensitized conditions. The copper(I)-catalyzed photocycloaddition of the dienes 4a, 4b, and 4c led to unexpected formation of the thermodynamically less stable cis-syn-cis 4-5-5 tricyclic adducts 5a, 5b, and 5c, respectively. The sensitized photocycloaddition of the diene 14 also gave the cis-syn-cis adduct 15 showing that the copper(I) catalyst does not have any influence on the stereochemical course through coordination with the anomeric ring oxygen of the furano sugar. The identical stereochemical course observed under both catalyzed and sensitized photoaddition reactions have been attributed to be of steric origin. Bis(dienes) 25a and 25b, which gave an intractable mixture on copper(I)-catalyzed irradiation, underwent smooth photocycloaddition in the presence of benzophenone, and the resulting 1,2-divinyl cyclobutanes underwent spontaneous [3.3]-rearrangement at room temperature to produce bicyclo[6.3.0]undecanes 30a and 30b, respectively. This investigation provides an approach for the construction of enantiopure bicyclo[3.2.0]heptanes and -[6.3.0]undecanes.  相似文献   

5.
The synthesis of novel dispiroheterocycles containing a bicyclo[2.2.1]heptane ring system through sequential [3+2] and [4+2] cycloadditions is described.  相似文献   

6.
A new photoredox-catalyzed decarboxylative radical addition approach to functionalized cyclobutanes is described. The reaction involves an unprecedented formal Giese-type addition of C(sp3)-centered radicals to highly strained bicyclo[1.1.0]butanes. The mild photoredox conditions, which make use of a readily available and bench stable phenyl sulfonyl bicyclo[1.1.0]butane, proved to be amenable to a diverse range of α-amino and α-oxy carboxylic acids, providing a concise route to 1,3-disubstituted cyclobutanes. Furthermore, kinetic studies and DFT calculations unveiled mechanistic details on bicyclo[1.1.0]butane reactivity relative to the corresponding olefin system.  相似文献   

7.
Novel insertion reactions of dichloro- and dibromocarbene into carbon-hydrogen bonds adjacent to cyclopropane rings are reported. It is found that the predominant isomers formed in the reactions with bicyclo[4.1.0]heptane result from insertion into the endo carbon-hydrogen bonds alpha to the three-membered ring. In the reactions of bicyclo[3.1.0]hexane, however, the exo dihalocarbene insertion products are formed as the major isomers. In some compounds cyclopropane rings "activate" adjacent carbon-hydrogen bonds, whereas other systems containing three-membered rings do not. Moreover, the influence of various substituents (methyl, geminal dimethyl, phenyl, methoxy, and ethoxy) attached to bicyclo[3.1.0]hexane and bicyclo[4.1.0]heptane in dihalocarbene reactions has been studied. The findings can be explained by the concept of maximum orbital overlaps of Walsh orbitals of the cyclopropane rings and the alpha carbon-hydrogen bonds. In stark contrast, selective insertion into the tertiary carbon-hydrogen bonds of the cyclobutane ring in bicyclo[4.2.0]octane is observed.  相似文献   

8.
A new photoredox‐catalyzed decarboxylative radical addition approach to functionalized cyclobutanes is described. The reaction involves an unprecedented formal Giese‐type addition of C(sp3)‐centered radicals to highly strained bicyclo[1.1.0]butanes. The mild photoredox conditions, which make use of a readily available and bench stable phenyl sulfonyl bicyclo[1.1.0]butane, proved to be amenable to a diverse range of α‐amino and α‐oxy carboxylic acids, providing a concise route to 1,3‐disubstituted cyclobutanes. Furthermore, kinetic studies and DFT calculations unveiled mechanistic details on bicyclo[1.1.0]butane reactivity relative to the corresponding olefin system.  相似文献   

9.
Biohydroxylation with Beauveria sulfurescens of the 5-exo position of the 2-aza bicyclo [2.2.1] heptane ring system gives rise to a precursor of carbocyclic 2-deoxy nucleosides.  相似文献   

10.
The diols 7-11 have been synthesized, and their X-ray crystal structures determined, to learn how to influence and control lattice hydroxy group hydrogen bonding using crystal engineering ideas. To obtain new lattice inclusion hosts precise structural rules can be defined which enable the necessary supramolecular interactions to be duplicated. In this manner the helical tubuland 10 and ellipsoidal clathrate 11 hosts were obtained for the first time and their chloroform inclusion compounds characterized. New synthetic routes were utilized to obtain the bicyclo[3.3.2]decane and 9-thiatricyclo[4.3.1.1(3,8)]undecane frameworks present in these compounds. The solid-state conformations of bicyclo[3.3.2]decane derivatives 9 and 10 are compared with prior predictions and studies made on this uncommon ring system.  相似文献   

11.
Distributions of the positive charge and unpaired electron in stable conformers of the thermal isomerization products of 1-methyltricyclo[4.1.0.02,7]heptane radical cation, having bicyclo[3.1.1]heptane, bicyclo[4.1.0]heptane, bicyclo[3.2.0]hept-6-ene, and 1,3-cycloheptadiene skeletons, were estimated by the PM3 semiempirical method.  相似文献   

12.
Marine dolabellane diterpenoid stolonidiol was synthesized from l-ascorbic acid. The method for this total synthesis involves formation of the bicyclo[2.2.1]heptane derivative using a diastereoselective sequential Michael reaction, formation of cyclopentane derivative by the retro-aldol reaction and construction of an 11-membered carbocyclic ring through the intramolecular Horner–Wadsworth–Emmons reaction.  相似文献   

13.
The title cyclohexenone 1d undergoes photodimerization selectively at the exocyclic C?C bond to give a 1 : 1 mixture of 1,2‐dialkynyl‐1,2‐dimethylcyclobutanes 6 and 7 . On irradiation in the presence of 2,3‐dimethylbuta‐1,3‐diene, 1d affords bicyclo[8.4.0]tetradeca‐1,2,3,7‐tetraen‐11‐one 9 . This – formal – (6+4)‐cycloadduct undergoes quantitative isomerization to 3‐cycloheptadienyl‐2,5,5‐trimethylcyclohex‐2‐enone 11 on treatment with basic silica gel.  相似文献   

14.
A novel Lewis acid-catalyzed cycloisomerization of alkylidenecyclopropane acylsilanes is disclosed. The readily available starting materials participate in tandem Prins addition/ring expansion/1,2-silyl shift to grant access to bicyclo[4.2.0]octanes and bicyclo[3.2.0]heptanes, which are common motifs in terpenoid natural products. Notably, the transformation relies on the ability of acylsilanes to act sequentially as acceptors and donors on the same carbon atom.

A novel Lewis acid-catalyzed cycloisomerization of alkylidenecyclopropane acylsilanes is disclosed that involves tandem Prins addition/ring expansion/1,2-silyl shift to grant access to bicyclo[4.2.0]octanes and bicyclo[3.2.0]heptanes.  相似文献   

15.
New heteroaryl-substituted o-divinylbenzenes, 2,2'-(1,2-phenylenedivinylene)difuran (9), 2,2'-(1,2-phenylenedivinylene)bisbenzo[b]furan (10), and 2,2'-(1,2-phenylenedivinylene)bisnaphtho[2,1-b]furan (11), were prepared and irradiated at various concentrations; intramolecular photocycloaddition and intermolecular [2+2] twofold photoaddition reactions took place to give bicyclo[3.2.1]octadiene derivatives 12-14 and cyclophane derivatives 15-17, respectively. Compound 11 was the most selective of these o-divinylbenzenes, which, owing to pi-pi intra- or intermolecular complexation, gave only the exo-bicyclo[3.2.1]octadiene derivative 14 at low concentrations, and only the cyclophane derivative 17 at high concentrations.  相似文献   

16.
The thermal isomerization of tricyclo[4.1.0.0(2,7)]heptane and bicyclo[3.2.0]hept-6-ene was studied using ab initio methods at the multiconfiguration self-consistent field level. The lowest-energy pathway for thermolysis of both structures proceeds through the (E,Z)-1,3-cycloheptadiene intermediate. Ten transition states were located, which connect these three structures to the final product, (Z,Z)-1,3-cycloheptadiene. Three reaction channels were investigated, which included the conrotatory and disrotatory ring opening of tricyclo[4.1.0.0(2,7)]heptane and bicyclo[3.2.0]hept-6-ene and trans double bond rotation of (E,Z)-1,3-cycloheptadiene. The activation barrier for the conrotatory ring opening of tricyclo[4.1.0.0(2,7)]heptane to (E,Z)-1,3-cycloheptadiene was found to be 40 kcal mol(-1), while the disrotatory pathway to (Z,Z)-1,3-cyclohetpadiene was calculated to be 55 kcal mol(-1). The thermolysis of bicyclo[3.2.0]hept-6-ene via a conrotatory pathway to (E,Z)-1,3-cycloheptadiene had a 35 kcal mol(-1) barrier, while the disrotatory pathway to (Z,Z)-1,3-cyclohetpadiene had a barrier of 48 kcal mol(-1). The barrier for the isomerization of (E,Z)-1,3-cycloheptadiene to bicyclo[3.2.0]hept-6-ene was found to be 12 kcal mol(-1), while that directly to (Z,Z)-1,3-cycloheptadiene was 20 kcal mol(-1).  相似文献   

17.
Visible light induced singlet nucleophilic carbenes undergo rapid [2 + 1]-cycloaddition with tethered olefins to afford unique bicyclo[3.1.0]hexane and bicyclo[4.1.0]heptane scaffolds. This cyclopropanation process requires only visible light irradiation to proceed, circumventing the use of exogenous (photo)catalysts, sensitisers or additives and showcases a vastly underexplored mode of reactivity for nucleophilic carbenes in chemical synthesis. The discovery of additional transformations including a cyclopropanation/retro-Michael/Michael cascade process to afford chromanones and a photochemical C–H insertion reaction are also described.

Visible light induced singlet nucleophilic carbenes undergo rapid [2 + 1]-cycloaddition with tethered olefins to afford unique bicyclo[3.1.0]hexane and bicyclo[4.1.0]heptane scaffolds.  相似文献   

18.
Carbon-13 shieldings and one-bond 13C? H coupling constants of bicyclo[2.1.1]hexane, bicyclo[2.1.1]hex-2-ene, tricyclo[3.1.1.02,4]heptane and benzvalene are presented and compared to the data of related compounds. If a bicyclo[3.1.0]hexane system is part of a rigid skeleton, the cyclopropane ring exerts specific γ substituent effects of two kinds. In the case of the bicyclohexane boat form an upfield shift of the C-3 signal is observed and in the case of the chair form a downfield shift of 15–20 ppm. Compared to the corresponding cyclopentanes the double bond in strained cyclopentenes causes downfield shifts of the C-4 absorption. This effect increases with increasing strain, reaching a 45.9 ppm maximum in benzvalene. Hence it is the only known bicyclo[1.1.0]butane having a reversed order of carbon shieldings. The downfield shifts are explained by means of simple orbital interaction schemes.  相似文献   

19.
Shimalactones A and B are neuritogenic polyketides possessing characteristic oxabicyclo[2.2.1]heptane and bicyclo[4.2.0]octadiene ring systems that are produced by the marine fungus Emericella variecolor GF10. We identified a candidate biosynthetic gene cluster and conducted heterologous expression analysis. Expression of ShmA polyketide synthase in Aspergillus oryzae resulted in the production of preshimalactone. Aspergillus oryzae and Saccharomyces cerevisiae transformants expressing ShmA and ShmB produced shimalactones A and B, thus suggesting that the double bicyclo‐ring formation reactions proceed non‐enzymatically from preshimalactone epoxide. DFT calculations strongly support the idea that oxabicyclo‐ring formation and 8π‐6π electrocyclization proceed spontaneously after opening of the preshimalactone epoxide ring through protonation. We confirmed the formation of preshimalactone epoxide in vitro, followed by its non‐enzymatic conversion to shimalactones in the dark.  相似文献   

20.
[reaction: see text] Rhodium(I)-catalyzed PKR of allenynes was found to be applicable for constructing azabicyclo[5.3.0]decadienone as well as oxabicyclo[5.3.0]decadienone frameworks. In addition, a reliable procedure for constructing a 10-monosubstituted bicyclo[5.3.0]deca-1,7-dien-9-one ring system by the rhodium(I)-catalyzed PKR of allenynes was developed under the condition of 10 atm of CO. Investigation of the rhodium(I)-catalyzed cycloisomerization of 4-phenylsulfonylnona-2,3-dien-8-ynes under nitrogen atmosphere gave the corresponding cyclohexene derivatives, whereas the C1-homologated allenynes produced cycloheptene derivatives and/or bicyclo[5.2.0]nonene skeletons depending on the substitution pattern at the allenic terminus. Thus, proper choice of the starting allenynes and reaction conditions led to the selective formation of 2-phenylsulfonylbicyclo[5.3.0]deca-1,7-dien-9-ones (Pauson-Khand-type product), 3-alkylidene-1-phenylsulfonyl-2-vinylcycloheptene derivatives, and bicyclo[5.2.0]nonene frameworks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号