首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
采用结合物理老化技术的示差扫描量热法(DSC)以及非辐射能量转移荧光光谱法(NRET)研究了聚(苯乙烯-co-4-乙烯基苯酚)(STVPh)与聚(苯乙烯-co-4-乙烯基吡啶)*(STVPy)共混体系在本体中的相容与络合行为,当STVPh中OH含量为3,6,9mol%时,可以分别与吡啶基含量是25,50,75mol%的STVPy实现相容,OH含量更高时还可进一步形成络合,表面为远较Fox方程预示值  相似文献   

2.
采用结合物理老化技术的示差扫描量热法( D S C) 以及非辐射能量转移荧光光谱法( N R E T) 研究了聚( 苯乙烯 co 4 乙烯基苯酚) ( S T V Ph) 与聚( 苯乙烯 co 4 乙烯基吡啶)( S T V Py) 共混体系在本体中的相容与络合行为.当 S T V Ph 中 O H 含量为3 ,6 ,9 m ol % 时,可以分别与吡啶基含量是25 ,50 ,75 mol % 的 S T V Py 实现相容, O H 含量更高时还可进一步形成络合,表现为远较 Fox 方程预示值高的 Tg 和窄的转变温度区间.此外,还讨论了浇膜溶剂对相容与络合的影响  相似文献   

3.
MOLECULARMECHANICALANDQUANTUMCHEMICALCALCULATIONONACYLATIONREACTIVITYFOR1-(NITROSUBSTITUTEDANILINO)-4-SUBSTITUTED-2,6-PIPERAZ...  相似文献   

4.
采用DMA和TEM系统研究了聚丁二烯-聚甲基丙烯酸甲酯的嵌段共聚物(PBD-b-PMMA)与聚氯乙烯(PVC)共混体系的相容性问题。结果表明:PVC/PBD-b-PMMA共混体系具有部分相溶性。相容的程度与共混体系的组成、组分聚合物的分子量以及共聚物中PBD和PMMA嵌段的比例密切相关。  相似文献   

5.
IN-SITU FTIR AND UV-VISIBLE-NEAR-IR SPECTROELECTROOHEMICAL STUDIES OF MIXED-VALENCE ISOPOLYANION Mo_6O_(19) ̄(3-) IN APROTIC M...  相似文献   

6.
STUDIESOFPOLYMERIMMOBILIZEDPd-CuCLUSTERCATALYSTSPREPAREDBYMETALATOMSYNTHESIS(MVS)ShiHuawu;ChangYingZHU;JiLiangZHUandXiShengSH...  相似文献   

7.
STUDIESONCHIRALTHIOPHOSPHORICACIDSANDTHEIRDERIVATIVES13.THEASYMMETRICCYCLIZATIONOF(+)-SUBSTITUTEDCYCLOPENTANODIAMINEWITHO-ARY...  相似文献   

8.
为了表明马来酸酐接枝聚烯烃后对聚酰胺的相容作用,本文研究了聚酰胺1010(PA1010)/聚乙烯-马来酸酐接枝共聚物(PE-g-MAH)共混物在不同MAH接枝量下的结晶性与力学性能。研究表明,MAH的存在导致PE-g-MAH-co-PA1010共聚物的形成,而该共聚物在标题共混物中起着相容剂的作用。共混物的结晶性能变化显示了共混组分间存在一定程度的混溶性。在一定的MAH含量内,标题共混物具有协同效应。  相似文献   

9.
STEREOSTRUCTUREOFPOLY[4-(2-METHYLPROPENOYLOXY)-4'-CYANOBIPHENYL]BYPHOTOPOLYMERIZATIONUNDERANEXTERNALELECTRICFIELD¥ChongWuLI;A...  相似文献   

10.
STUDIESONTHENON-ISOTHERMALKINETICSOFTHERMALDECOMPOSITIONSOFTHECOMPLEXESOFCd(II)WITHO-VANILLINTHIOSEMICARBAZONEANDIRON(III)WIT...  相似文献   

11.
By progressively increasing the hydrogen bonding interaction, otherwise immiscible polymer blends composed of modified polystyrene and poly(alkyl methacrylate) can achieve miscibility and complexation successively. The differences in chain arrangement between the states of mere miscibility and complex can be detected by a modified NRET fluorescence technique. Immiscibility-miscibility-complexation transitions have been proved to be of generality for polymer blends with controllable hydrogen bonding.  相似文献   

12.
In this paper, we briefly report the main results of our work on the effect of introducing specific interaction on the miscibility of otherwise immiscible polymer blends. A strong proton-donating unit (CF3)2(OH)C- was incorporated into polystyrene (PS(OH)). A series of blends of PS(OH) with one of polyacrylates such as PBA, PMMA, PEMA and PBMA was studied. The infrared spectra of the blends present convincing evidence of the formation of hydrogen bonding. The frequency shift of the OH stretching band due to H-bonding is independent of the structure and composition of the hydroxyl-containing polymers, but clearly dependent on those of the counterpolymers. Both excimer and nonradiative energy transfer (NRET) fluorescence techniques have proved effective for monitoring the variation of the degree of molecular interpenetration with the density and strength of the hydrogen bonds in the blends. TEM observations reveal clear and regular variation in the morphology of the blends with the content of hydroxyl-containing groups. The morphological features of this kind of blends are almost controllable since the structure and/or amount of the introduced groups forming hydrogen bonding are readily adjusted in chemistry. NRET and viscosity measurements of solutions of polyacrylate and PS(OH) with relatively high hydroxyl contents in toluene provide evidence of the intermolecular complexation. In addition, the effect of introducing simultaneously crosslinking and intermolecular hydrogen bonding into blends of PS and PBA on miscibility was studied. It is concluded that single phase IPN can be prepared, but much higher content of the proton donor is needed in comparison with the blends of the corresponding linear polymers. The interlocking structure of the networks appears unfavourable to forming miscible IPN.  相似文献   

13.
聚合物共混是制备新材料的有效方法,共混物的相容性是影响材料性能的决定性因素.研究表明,共混物中引入氢键能增加组分聚合物间的相容性.聚碳酸异丙烯[Poly(propylene carbonate),PPC]是一种新材料,它合成经济,且能生物降解,但PPC的低玻璃化转变温度和非晶性使其实际应用受到很大限制.若将PPC与其它聚合物共混制备成高分子共混物,能有效获得新性能.  相似文献   

14.
为了解决废弃塑料引起的“白色污染”问题,世界各国竞相研制开发可生物降解高分子材料,其中,有关聚β羟基丁酸酯[poly(βhydroxybutyrate)(PHB)]的研究尤其活跃.然而,由于商品价格较高,材料本身抗冲击性能较差、加工窗口较窄等限制...  相似文献   

15.
The Δχ effect on the miscibility of polymer blends prepared by solution-casting has been investigated using the mixture of poly(methyl methacrylate)(PMMA) with poly(vinyl acetate) (PVAc). The PMMA/PVAc blends have been prepared by casting from eleven different solutions. The Δχ effect of the solution–cast PMMA/PVAc blends was discussed in terms of Hansen's specified solubility parameters. It was found that the miscibility of the blends could be defined mainly by the solubility parameter contributed by the hydrogen–bonding of a solvent.  相似文献   

16.
Blends of poly(propylene carbonate) (PPC) with copolymer poly(styrene‐co‐4‐vinyl phenol) (STVPh) have been studied by electron spin resonance (ESR) spin probe method and Raman spectroscopy. The ESR results indicated that the nitroxide radical existed in a PPC‐rich and an STVPh‐rich micro domain in the blends, corresponding to the fast‐motion and slow‐motion component in the ESR spectra, respectively. And in the temperature dependence composite spectra, the fast‐motion fraction increased with increasing the hydroxyl group content in copolymer STVPh. Moreover, the ESR parameter T5mT, rotational correlation times (τc) and activation energies (Ea) showed similar dependence on the hydroxyl group content as the fast‐motion fraction. It resulted from the enhancement of the hydrogen‐bonding interaction between the hydroxyl groups in STVPh and the carboxyl groups and ether oxygen in PPC. However, the distinct band shift and intensity change among the Raman spectra of pure polymer components and those of the blends were observed. In the carboxyl‐stretching region, the band shifted to lower frequency with increasing the hydroxyl groups. Furthermore, the phase morphologies of the blends were obtained by optical microscopy. All could be concluded that the hydrogen‐bonding interaction between the two components was progressively favorable to the mixing process and was the driving force for the miscibility enhancement in the blends. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
To investigate the effects of solvent type and temperature on the interpolymer complexation via hydrogen bonding, a study was made on the complex system of poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) in two kinds of solvent systems, pure water and water-MeOH (30 wt%) mixed solvent, at various temperatures using the Ubbelohde viscometer, pH-meter, and UV spectrophotometer. The repeating unit mole ratio at the most optimum complexation as confirmed by the reduced viscosity measurement was shifted from [PEO]/[PAA] ≈ 1.25:1 to 1.5:1 by the addition of methanol to water. From the UV measurement, the deviation from the “isosbestic point” (where the absorbance of the solution remains constant) has presented another evidence for the solvent effect on complexation. In addition, the analysis of the changes in thermodynamic properties upon complexation as well as the fraction of carboxyls associated with PEO oxygens and the complex stability constant as estimated by potentiometric titration at several temperatures reveals that the complex formation in mixed solvent became more unfavorable compared to that in pure solvent at high temperatures above 30°C. This could be explained by considering that in water the hydrophobic interaction as well as the hydrogen bonding may greatly contribute to the stabilization of the polymer complex formed, while in water-methanol the main stabilizing force would be the hydrogen bonding alone.  相似文献   

18.
The evolution of surface composition in polymer blends and interpolymer complexes was studied using X‐ray photoelectron spectroscopy (XPS) and Time‐of‐Flight secondary ion mass spectroscopy (ToF‐SIMS). For immiscible and miscible poly(styrene‐co‐4‐vinyl phenol)/poly(styrene‐co‐4‐vinyl pyridine) (STVPh/STVPy) blends, surface enrichment by the lower surface energy component STVPh was always observed. Increasing VPh contents in STVPh from 0 to 16 mol % spans the transition from immiscible to miscible blends; the differences in surface free energies between STVPh and STVPy decreased, but surface enrichment of STVPh continued to increase. This is due to the strong hydrogen bonded self‐association of STVPh, which dominates over the immiscibility to miscibility transition in controlling the surface composition. In the immiscible and miscible blends, decreasing the molecular weights of STVPy, which decreased the surface free energy of STVPy, systematically reduced surface enrichment by STVPh. For STVPh/STVPy complexes formed at VPh contents higher than 21 mol %, surface enrichment of STVPh is barely detectable. STVPh and STVPy form a new supramolecular species. Interpolymer complexation is now the decisive factor controlling the surface composition, dominating over the surface free energy differences; the effect of STVPy molecular weight variation on the surface composition is also negligible for the interpolymer complexes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1924–1930, 2005  相似文献   

19.
利用自旋标记法将氮氧自由基连接在聚氧化乙烯分子末端,测得其与不同羟基含量的苯乙烯-4-乙烯基苯酚共聚物组成高分子共混体系的ESR波谱,研究了各组分的分子链运动.自旋标记聚氧化乙烯的ESR谱图在整个温度范围内只显示快运动或慢运动的一种运动成分,表明氮氧自由基处于单一的环境中.高分子共混体系的ESR谱在一定温度范围内同时存在快运动和慢运动的两种运动成分,且两成分相对比例随温度的变化而变化,表明体系中氮氧自由基处于不同的微相环境中.由ESR谱得到的T5mTc,Ea的值都随着体系中羟基含量的增加而变大,显示标记分子的链运动在共混体系中的活动逐步受阻.与此同时,随着该共混物中酚羟基和醚氧基间氢键相互作用强度的增大,共混物的相容性得到逐步改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号