首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a time semi-discrete Crank-Nicolson (CN) formulation with second-order time accuracy for the non-stationary parabolized Navier-Stokes equations is firstly established. And then, a fully discrete stabilized CN mixed finite element (SCNMFE) formulation based on two local Gauss integrals and parameterfree with the second-order time accuracy is established directly from the time semi-discrete CN formulation. Thus, it could avoid the discussion for semi-discrete SCNMFE formulation with respect to spatial variables and its theoretical analysis becomes very simple. Finaly, the error estimates of SCNMFE solutions are provided.  相似文献   

2.
罗振东 《计算数学》2014,36(4):355-362
首先给出二维非饱和土壤水流问题基于Crank-Nicolson(CN)方法的具有时间二阶精度的半离散化格式,然后直接从CN时间半离散化格式出发,建立具有时间二阶精度的全离散化CN有限元格式,并给出误差估计,最后用数值例子说明全离散化CN有限元格式的优越性.这种方法可以绕开关于空间变量的半离散化格式的讨论,提高时间离散的精度,极大地减少时间方向的迭代步,从而减少实际计算中截断误差的积累,提高计算精度和计算效率.  相似文献   

3.
腾飞  罗振东 《计算数学》2014,36(2):205-214
首先给出二维非饱和土壤水流方程时间二阶精度的Crank-Nicolson(CN)时间半离散化格式,然后直接从CN时间半离散化格式出发,建立具有时间二阶精度的全离散化CN广义差分格式,并给出误差分析,最后用数值例子验证全离散化CN广义差分格式的优越性.这种方法能提高时间离散的精度,极大地减少时间方向的迭代步,从而减少实际计算中截断误差的积累,提高计算精度和计算效率.而且该方法可以绕开对空间变量的半离散化广义差分格式的讨论,使得理论研究更简便.  相似文献   

4.
首先给出Sobolev方程关于时间二阶精度的Crank-Nicolson(CN)时间半离散格式,然后直接从时间二阶精度的CN时间半离散格式出发,构造CN全离散化的有限元格式,并给出这种时间二阶精度的CN全离散化有限元解的误差估计.本文研究方法使得理论证明变得更简便, 也是处理Sobolev方程的一种新的尝试.  相似文献   

5.
本文用分裂正定混合有限元方法研究二阶粘弹性方程. 首先构造一种新的分裂正定混合变分形式和基于这种分裂正定混合变分形式关于时间的半离散格式, 然后绕开关于空间变量的半离散化格式, 直接从时间半离散出发构造出全离散化的分裂正定混合有限元格式, 并给出这种分裂正定混合有限元解的误差估计. 这种研究思路使得理论论证变得更简单,这是处理二阶粘弹性方程的一种新的尝试.  相似文献   

6.
We develop two linear, second order energy stable schemes for solving the governing system of partial differential equations of a hydrodynamic phase field model of binary fluid mixtures. We first apply the Fourier pseudo-spectral approximation to the partial differential equations in space to obtain a semi-discrete, time-dependent, ordinary differential and algebraic equation (DAE) system, which preserves the energy dissipation law at the semi-discrete level. Then, we discretize the DAE system by the Crank-Nicolson (CN) and the second-order backward differentiation/extrapolation (BDF/EP) method in time, respectively, to obtain two fully discrete systems. We show that the CN method preserves the energy dissipation law while the BDF/EP method does not preserve it exactly but respects the energy dissipation property of the hydrodynamic model. The two new fully discrete schemes are linear, unconditional stable, second order accurate in time and high order in space, and uniquely solvable as linear systems. Numerical examples are presented to show the convergence property as well as the efficiency and accuracy of the new schemes in simulating mixing dynamics of binary polymeric solutions.  相似文献   

7.
本文研究二维非定常Stokes方程全离散稳定化有限元方法.首先给出关于时间向后一步Euler半离散格式,然后直接从该时间半离散格式出发,构造基于两局部高斯积分的稳定化全离散有限元格式,其中空间用P_1—P_1元逼近,证明有限元解的误差估计.本文的研究方法使得理论证明变得更加简便,也是处理非定常Stokes方程的一种新的途径.  相似文献   

8.
将特征正交分解(proper orthogonal decomposition, 简记为POD) 方法应用于抛物型方程通常的时间二阶精度Crank-Nicolson (简记为CN) 有限元格式, 简化其为一个自由度极少的时间二阶精度CN 有限元降维格式, 并给出简化的时间二阶精度CN 有限元解的误差分析. 数值例子表明在简化的时间二阶精度CN 有限元解和通常的时间二阶精度CN 有限元解之间的误差足够小的情况下, 简化的时间二阶精度CN 有限元格式能大大地节省自由度, 而且时间步长可以比时间一阶精度的格式取大10 倍, 以至能更快计算到所要时刻数值解, 减少计算机计算过程的截断误差, 提高计算速度和计算精度,从而验证降维时间二阶精度CN 有限元格式用于解类似于抛物型方程的时间依赖方程是很有效的.  相似文献   

9.
In this paper we consider the numerical solution of the one-dimensional heat equation on unbounded domains. First an exact semi-discrete artificial boundary condition is derived by discretizing the time variable with the Crank-Nicolson method. The semi-discretized heat equation equipped with this boundary condition is then proved to be unconditionally stable, and its solution is shown to have second-order accuracy. In order to reduce the computational cost, we develop a new fast evaluation method for the convolution operation involved in the exact semi-discrete artificial boundary condition. A great advantage of this method is that the unconditional stability held by the semi-discretized heat equation is preserved. An error estimate is also given to show the dependence of numerical errors on the time step and the approximation accuracy of the convolution kernel. Finally, a simple numerical example is presented to validate the theoretical results.  相似文献   

10.
A time-integration scheme for semi-discrete linear Maxwell equations is proposed. Special for this scheme is that it employs component splitting. The idea of component splitting is to advance the greater part of the components of the semi-discrete system explicitly in time and the remaining part implicitly. The aim is to avoid severe step size restrictions caused by grid-induced stiffness emanating from locally refined space grids. The proposed scheme is a blend of an existing second-order composition scheme which treats wave terms explicitly and the second-order implicit trapezoidal rule. The new blended scheme retains the composition property enabling higher-order composition.  相似文献   

11.
In this study, we present a conservative local discontinuous Galerkin(LDG) method for numerically solving the two-dimensional nonlinear Schrdinger(NLS) equation. The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux. The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central, alternative and upwind-based flux. We will propose two kinds of time discretization methods for the semi-discrete formulation. One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation. The other one is Krylov implicit integration factor(IIF) method which demands much less computational effort. Various numerical experiments are presented to demonstrate the conservation law of mass and energy, the optimal rates of convergence, and the blow-up phenomenon.  相似文献   

12.
针对非线性双相滞热传导方程,建立了一种自由度少且自然满足B-B条件的新混合元逼近格式.在半离散格式下,基于双线性元的高精度结果,分别导出了原始变量的H~1模及中间变量的L~2模的超逼近性质,进而,借助于插值后处理算子,得到了原始及中间变量比传统误差高一阶的整体超收敛结果.  相似文献   

13.
We consider a semi-discrete finite element formulation with artificial viscosity for the numerical approximation of a problem that models the damped vibrations of a string with fixed ends. The damping coefficient depends on the spatial variable and is effective only in a sub-interval of the domain. For this scheme, the energy of semi-discrete solutions decays exponentially and uniformly with respect to the mesh parameter to zero. We also introduce an implicit in time discretization. Error estimates for the semi-discrete and fully discrete schemes in the energy norm are provided and numerical experiments performed.  相似文献   

14.
A nonlinear fully implicit finite difference scheme with second-order time evolution for nonlinear diffusion problem is studied.The scheme is constructed with two-layer coupled discretization (TLCD) at each time step.It does not stir numerical oscillation,while per-mits large time step length,and produces more accurate numerical solutions than the other two well-known second-order time evolution nonlinear schemes,the Crank-Nicolson (CN)scheme and the backward difference formula second-order (BDF2) scheme.By developing a new reasoning technique,we overcome the difficulties caused by the coupled nonlinear discrete diffusion operators at different time layers,and prove rigorously the TLCD scheme is uniquely solvable,unconditionally stable,and has second-order convergence in both s-pace and time.Numerical tests verify the theoretical results,and illustrate its superiority over the CN and BDF2 schemes.  相似文献   

15.
In this article, a proper orthogonal decomposition (POD) method is used to study a classical splitting positive definite mixed finite element (SPDMFE) formulation for second-order hyperbolic equations. A POD reduced-order SPDMFE extrapolating algorithm with lower dimensions and sufficiently high accuracy is established for second-order hyperbolic equations. The error estimates between the classical SPDMFE solutions and the reduced-order SPDMFE solutions obtained from the POD reduced-order SPDMFE extrapolating algorithm are provided. The implementation for solving the POD reduced-order SPDMFE extrapolating algorithm is given. Some numerical experiments are presented illustrating that the results of numerical computation are consistent with theoretical conclusions, thus validating that the POD reduced-order SPDMFE extrapolating algorithm is feasible and efficient for solving second-order hyperbolic equations.  相似文献   

16.
In this article, a proper orthogonal decomposition (POD) method is used to study a classical splitting positive definite mixed finite element (SPDMFE) formulation for second- order hyperbolic equations. A POD reduced-order SPDMFE extrapolating algorithm with lower dimensions and sufficiently high accuracy is established for second-order hyperbolic equations. The error estimates between the classical SPDMFE solutions and the reduced-order SPDMFE solutions obtained from the POD reduced-order SPDMFE extrapolating algorithm are provided. The implementation for solving the POD reduced-order SPDMFE extrapolating algorithm is given. Some numerical experiments are presented illustrating that the results of numerical computation are consistent with theoretical conclusions, thus validating that the POD reduced-order SPDMFE extrapolating algorithm is feasible and efficient for solving second-order hyperbolic equations.  相似文献   

17.
基于双线性元及其梯度所属空间,建立了非线性Schrdinger方程的自由度少且易满足B-B条件的新混合元格式.首先,利用双线性元的高精度分析和导数转移技巧,在半离散格式下,导出了原始变量在H~1模及流量在L~2模意义下的超逼近性质,进而,借助于插值后处理算子,得到了整体超收敛结果.最后,对向后:Euler和Crank-Nicolson-Galerkin全离散格式分别给出了原始变量的H~1模及L~2模和流量的L~2模误差分析,并通过数值算例,表明逼近格式是高效的.  相似文献   

18.
A proper orthogonal decomposition (POD) method was successfully used in the reduced-order modeling of complex systems. In this paper, we extend the applications of POD method, namely, apply POD method to a classical finite element (FE) formulation for second-order hyperbolic equations with real practical applied background, establish a reduced FE formulation with lower dimensions and high enough accuracy, and provide the error estimates between the reduced FE solutions and the classical FE solutions and the implementation of algorithm for solving reduced FE formulation so as to provide scientific theoretic basis for service applications. Some numerical examples illustrate the fact that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced FE formulation based on POD method is feasible and efficient for solving FE formulation for second-order hyperbolic equations.  相似文献   

19.
In this paper, the multi-symplectic Fourier pseudospectral (MSFP) method is generalized to solve two-dimensional Hamiltonian PDEs with periodic boundary conditions. Using the Fourier pseudospectral method in the space of the two-dimensional Hamiltonian PDE (2D-HPDE), the semi-discrete system obtained is proved to have semi-discrete multi-symplectic conservation laws and a global symplecticity conservation law. Then, the implicit midpoint rule is employed for time integration to obtain the MSFP method for the 2D-HPDE. The fully discrete multi-symplectic conservation laws are also obtained. In addition, the proposed method is applied to solve the Zakharov-Kuznetsov (ZK) equation and the Kadomtsev-Petviashvili (KP) equation. Numerical experiments on soliton solutions of the ZK equation and the KP equation show the high accuracy and effectiveness of the proposed method.  相似文献   

20.
This paper proposes and analyzes semi-discrete and fully discrete hybrid stress finite element methods for elastodynamic problems. A hybrid stress quadrilateral finite element approximation is used in the space directions. A second-order center difference is adopted in the time direction for the fully discrete scheme. Error estimates of the two schemes, as well as a stability result for the fully discrete scheme, are derived. Numerical experiments are done to verify the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号