首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modern rigid porous polymer monoliths were conceived as a new class of stationary phases in classical columns in the early 1990s and later extended to the capillary format. These monolithic materials are typically prepared using a simple molding process carried out within the confines of the capillary. Polymerization of a mixture comprising monomers, initiator, and porogenic solvent affords macroporous materials with large through-pores that enable applications in a rapid flow-through mode. Since all the mobile phase must flow through the monolith, convection considerably accelerates mass transport within the monolithic separation medium and improves the separations. As a result, monolithic columns perform well even at very high flow rates. Various mechanisms including thermally and UV initiated free radical polymerization as well as ring opening metathesis copolymerizations were demonstrated for the preparation of monolithic capillary columns. The versatility of these preparation techniques was demonstrated by their use with hydrophobic (styrene, divinylbenzene, butyl methacrylate, ethylene dimethacrylate), hydrophilic (2-hydroxyethyl methacrylate, methacrylamide, methylenebisacrylamide), ionizable (vinylsulfonic acid, 2-acrylamido-2-methyl-propanesulfonic acid), and tailor-made (norborn-2-ene, 1,4,4a,5,8,8a-hexahydro-1,4,5,8-exo,endo-dimethanonaphthalene) monomers. Variation of polymerization conditions enables control of the porous properties of the monolith over a broad range and mediates the hydrodynamic properties of the monolithic columns. The applications of polymer-based monolithic capillary columns are demonstrated for numerous separations in the microHPLC mode.  相似文献   

2.
Rigid porous polymer monoliths are a new class of materials that emerged in the early 1990s. These monolithic materials are typically prepared using a simple molding process carried out within the confines of a closed mold. For example, polymerization of a mixture comprising monomers, free-radical initiator, and porogenic solvent affords macroporous materials with large through-pores that enable applications in a rapid flow-through mode. The versatility of the preparation technique is demonstrated by its use with hydrophobic, hydrophilic, ionizable, and zwitterionic monomers. Several system variables can be used to control the porous properties of the monolith over a broad range and to mediate the hydrodynamic properties of the monolithic devices. A variety of methods such as direct copolymerization of functional monomers, chemical modification of reactive groups, and grafting of pore surface with selected polymer chains is available for the control of surface chemistry. Since all the mobile phase must flow through the monolith, the convection considerably accelerates mass transport within the molded material, and the monolithic devices perform well, even at very high flow rates. The applications of polymeric monolithic materials are demonstrated mostly on the separations in the HPLC mode, although CEC, gas chromatography, enzyme immobilization, molecular recognition, advanced detection systems, and microfluidic devices are also mentioned.  相似文献   

3.
This paper describes the fabrication of RP/ion-exchange mixed-mode monolithic materials for capillary LC. Following deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (gamma-MAPS), monoliths were formed by copolymerisation of pentaerythritol diacrylate monostearate (PEDAS), 2-sulphoethyl methacrylate (SEMA) with/without ethylene glycol dimethacrylate (EDMA) within 100 microm id capillaries. In order to investigate the porous properties of the monoliths prepared in our laboratory, mercury intrusion porosimetry, SEM and micro-HPLC were used to measure the monolithic structures. The monolithic columns prepared without EDMA showed bad mechanical stability at high pressure, which is undesirable for micro-HPLC applications. However, it was observed that the small amount (5% w/w) of EDMA clearly improved the mechanical stability of the monoliths. In order to evaluate their application for micro-HPLC, a range of neutral, acidic and basic compounds was separated with these capillaries and satisfactory separations were obtained. In order to further investigate the separation mechanism of these monolithic columns, comparative studies were carried out on the poly(PEDAS-co-SEMA) monolithic column and two other monoliths, poly(PEDAS) and poly(PEDAS-co-2-(methacryloyloxy)ethyl-trimethylammonium methylsulphate (METAM)). As expected, different selectivities were observed for the separation of basic compounds on all three monolithic columns using the same separation conditions. The mobile phase pH also showed clear influence on the retention time of basic compounds. This could be explained by ion-exchange interaction between positively charged analytes and the negatively charged sulphate group.  相似文献   

4.
Monolithic columns were introduced in the early 1990s and have become increasingly popular as efficient stationary phases for most of the important chromatographic separation modes. Monoliths are functionally distinct from porous particle-based media in their reliance on convective mass transport. This makes resolution and capacity independent of flow rate. Monoliths also lack a void volume. This eliminates eddy dispersion and permits high-resolution separations with extremely short flow paths. The analytical value of these features is the subject of recent reviews. Nowadays, among other types of rigid macroporous monoliths, the polymethacrylate-based materials are the largest and most examined class of these sorbents. In this review, the applications of polymethacrylate-based monolithic columns are summarized for the separation, purification and analysis of low and high molecular mass compounds in the different HPLC formats, including micro- and large-scale HPLC modes.  相似文献   

5.
A comparison is made between the efficiency of microparticulate capillary columns and silica and polymer-based monolithic capillary columns in the pressure-driven (high-performance liquid chromatography) and electro-driven (capillary electrochromatography) modes. With packed capillary columns similar plate heights are possible as with conventional packed columns. However, a large variation is observed in the plate heights for individual columns. This can only be explained by differences in the quality of the packed bed. The minimum plate height obtained with silica monolithic capillary columns in the HPLC mode is approximately 10 microm, which is comparable to that of columns packed with 5-microm particles. The permeability of wide-pore silica monoliths was found to be much higher than that of comparable microparticulate columns, which leads to much lower pressure drops for the same eluent at the same linear mobile phase velocity. For polymer-based monolithic columns (acrylamide, styrene/divinyl benzene, methacrylate, acrylate) high efficiencies have been found in the CEC mode with minimum plate heights between 2 and 10 microm. However, in the HPLC mode minimum plate heights in the range of 10 to 25 microm have been reported.  相似文献   

6.
毛细管电色谱中整体式高聚物毛细管柱技术的进展   总被引:7,自引:0,他引:7  
对近期毛细管电色谱(CEC)中利用高分子聚合反应制备整体式(monolithic)毛细管柱的技术,特别对各种不同类型的整体式毛细管的制备方法进行了详细介绍;对该类毛细管用于不同样品的分离情况进行了总结。  相似文献   

7.
Monolithic columns for capillary electrochromatography are receiving quite remarkable attention. This review summarizes results excerpted from numerous papers concerning this rapidly growing area with a focus on monoliths prepared from synthetic polymers. Both the simplicity of the in situ preparation and the large number of readily available chemistries make the monolithic separation media a vital alternative to capillary columns packed with particulate materials. Therefore, they are now a well-established stationary phase format in the field of capillary electrochromatography. A wide variety of synthetic approaches as well as materials used for the preparation of the monolithic stationary phases are presented in detail. The analytical potential of these columns is demonstrated with separations involving various families of compounds and different chromatographic modes.  相似文献   

8.
Preparation methods of monolithic silica columns for HPLC including the surface modification were reviewed. Chemical modification methods recently reported to obtain stationary phases for reversed-phase (RP), chiral, ion-exchange, and hydrophilic interaction chromatography (HILIC) separations were discussed. Recent results related to preparation methods of monolithic silica were also covered. The characteristics and properties of silica monoliths and some applications of monolithic silica columns for different analytical and bioanalytical fields will be commented.  相似文献   

9.
A method is proposed for the comprehensive characterization and comparison of columns in the high-performance liquid chromatographic (HPLC) and capillary electrochromatographic (CEC) modes. Using this approach, column parameters such as the number of plates, the eddy-diffusion and mass-transfer contributions to peak broadening, the permeability, and the analysis time are incorporated in a single graph and a comparison in terms of efficiency and speed is obtained. The chromatographic performance of silica-based and polymer-based monolithic capillary columns is discussed and a comparison is made with the performance of packed columns. Also, the potential of ultra-high-pressure liquid chromatography is discussed in this context. In the HPLC mode, the best results were obtained with silica monoliths; in the CEC mode, the low-density methacrylate-ester-based monoliths showed the best performance.  相似文献   

10.
Monolithic materials have quickly become a well‐established stationary phase format in the field of capillary electrochromatography (CEC). Both the simplicity of their in situ preparation method and the large variety of readily available chemistries make the monolithic separation media an attractive alternative to capillary columns packed with particulate materials. This review summarizes the contributions of numerous groups working in this rapidly growing area, with a focus on monolithic capillary columns prepared from synthetic polymers. Various approaches employed for the preparation of the monoliths are detailed, and where available, the material properties of the resulting monolithic capillary columns are shown. Their chromatographic performance is demonstrated by numerous separations of different analyte mixtures in variety of modes. Although detailed studies of the effect of polymer properties on the analytical performance of monolithic capillaries remain scarce at this early stage of their development, this review also discusses some important relationships such as the effect of pore size on the separation performance in more detail.  相似文献   

11.
The in situ preparation of monolithic capillary columns comprising copolymers of butyl methacrylate with ethylene dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and pentaerythritol tetraacrylate using thermal polymerization within 250 microm ID capillaries and their application for micro-HPLC separations of proteins has been studied. For all crosslinkers, optimization of the porogenic mixture consisting of 1-propanol and 1,4-butanediol yielded monoliths with pore sizes above 1 microm suitable for rapid separations at low back pressure. Very good separations were achieved for a protein mixture consisting of ribonuclease A, cytochrome c, myoglobin, and ovalbumin with all tested columns.  相似文献   

12.
The preparation of monolithic poly(butyl methacrylate-co-ethylene dimethacrylate) capillary columns using photoinitiated in situ polymerization within 200 microm i.d. capillaries and their application for microHPLC separations of proteins have been studied. The low resistance to flow characteristic of monolithic columns, enabled the use of very high flow rates of up to 100 microL/min representing a flow velocity of 87 mm/s. Very good separations of a model protein mixture consisting of ribonuclease A, cytochrome c, myoglobin, and ovalbumin was achieved in less than 40 s using a very simple single step gradient of the mobile phase. Interestingly, no effect of the pore size on the separations of proteins was observed for these monolithic columns within the size range of 0.66-2.2 microm. The monolithic microHPLC columns are found very robust and no changes in the long term separation performance and back pressure were observed.  相似文献   

13.
Zhu T  Row KH 《Journal of separation science》2012,35(10-11):1294-1302
This review presents an overview of the properties of hybrid organic-inorganic monolithic materials and summarizes the recent developments in the preparation and applications of these hybrid monolithic materials. Hybrid monolithic materials with porosities, surface functionalities, and fast dynamic transport have developed rapidly, and have been used in a wide range of applications owing to the low cost, good stability, and excellent performance. Basically, these materials can be divided into two major types according to the chemical composition: hybrid silica-based monolith (HSM) and hybrid polymer-based monolith (HPM). Compared to the HPM, HSM monolith has been attracting most wide attentions, and it is commonly synthesized by the sol-gel process. The conventional preparation procedures of two type's hybrid organic-inorganic monoliths are addressed. Applications of hybrid organic-inorganic monoliths in optical devices, capillary microextraction (CME), capillary electrochromatography (CEC), high performance liquid chromatography (HPLC), and chiral separation are also reviewed.  相似文献   

14.
Guiochon G 《Journal of chromatography. A》2007,1168(1-2):101-68; discussion 100
Monolithic media have been used for various niche applications in gas or liquid chromatography for a long time. Only recently did they acquire a major importance in high-performance column liquid chromatography (HPLC). The advent of monolithic silica standard- and narrow-bore columns and of several families of polymer-based monolithic columns has considerably changed the HPLC field, particularly in the area of narrow-bore columns. The origin of the concept, the differences between their characteristics and those of traditional packed columns, their advantages and drawbacks, the methods of preparation of monoliths of different forms, and the current status of the field are reviewed. The actual and potential performance of monolithic columns are compared with those of packed columns. Monolithic columns have considerable advantages, which makes them most useful in many applications of liquid chromatography. They are extremely permeable and offer a high efficiency that decreases slowly with increasing flow velocity.  相似文献   

15.
16.
Monolithic silica columns and their use in high peak-capacity HPLC separations are reviewed. Monolithic silica columns can potentially provide higher overall performance than particle-packed columns based on the variable external porosity and variable through-pore size/skeleton size ratios. The high permeability of monolithic silica columns resulting from the high porosity is shown to be advantageous to generate large numbers of theoretical plates with long capillary columns. High permeability together with the high stability of the network structures of silica allows their use in high-speed separations required for a second-dimension column in two dimensional HPLC. Disadvantages of monolithic silica columns are also described.  相似文献   

17.
Monolithic capillary columns were prepared via ring-opening metathesis polymerization (ROMP) using norborn-2-ene (NBE) and 1, 4, 4a, 5, 8, 8a-hexahydro-1, 4, 5, 8-exo,endo-dimethanonaphthalene (DMN-H6) as monomers. The monolithic polymer was copolymerized with Grubbs-type initiator RuCl(2)(PCy(3))(2)(CHPh) and a suitable porogenic system within the confines of fused silica capillaries of different inner diameter (I.D.). The first part of the study focused on batch-to-batch reproducibility of ROMP-derived capillary monoliths. Capillary monoliths of 200 microm I.D. showed good reproducibility in terms of retention times, with relative standard deviations (RSD) of 1.9% for proteins and 2.2% for peptides. However, the separately synthesized capillary monoliths revealed pronounced variation in back pressure with RSD values of up to 31%. These variations were considerably reduced by cooling of the capillaries during polymerization. Using this optimized preparation procedure capillary monoliths of 100 and 50 microm I.D. were synthesized and the effects of scaling down the column I.D. on the morphology and on the reproducibility of the polymerization process were investigated. In the second part, the applicability of ROMP-derived capillary monoliths to a separation problem common in medical research was assessed. A 200 microm I.D. monolithic column demonstrated excellent separation behavior for insulin and various insulin analogs, showing equivalent separation performance to Vydac C4 and Zorbax C3-based stationary phases. Moreover, the high permeability of monoliths enabled chromatographic separations at higher flow rates, which shortened analysis time to about one third. For the analysis of insulin in human biofluid samples, enhanced sensitivity was achieved by using a 50 microm I.D. ROMP-derived monolith.  相似文献   

18.
毛细管电色谱具有高分离效率、多种保留机制和高选择性的优点。近年来,利用毛细管电色谱进行对映异构体的手性拆分受到了广泛关注。相对于传统的填充柱和开管柱,整体柱在手性拆分方面具有显著优势。与手性硅基整体柱相似,手性有机聚合物整体柱由于具有大孔,可产生较高的流速而压降较小。该文综述了近十年手性有机聚合物整体柱制备方法的研究进展,将手性有机聚合物整体柱的制备方法分为"原位聚合法"和"手性修饰法"两种,虽然前者制备简单并广泛应用于早期研究,但聚合混合液成分的微小改变即可引起最终聚合物的形态变化,并且大部分带丙烯基的手性选择剂较难从市场购买。因此,手性修饰法因作为手性选择剂基质的整体柱制备且优化只需进行一次的优势而受到普遍关注。亲核取代、杂环开环和点击化学是常用的修饰手段。该文总结了这两种制备方法的应用,同时对未来的研究方向提出参考性意见。  相似文献   

19.
Monolithic capillary columns based on pentaerythritol triacrylate and pentaerythritol tetraacrylate were synthesized using different compositions of polymerization mixtures and different polymerization conditions. The impact of porogen type and porogen/monomer ratio on the porosity of synthesized monoliths was investigated. Porogen type appears to be the main factor influencing the separating properties of the monolithic sorbent. Using optimal polymerization conditions (porogen type, porogen/monomer ratio, reaction temperature, time etc.) monoliths with a porous structure optimized for polymer separations can be obtained. The monolithic capillary columns containing porous sorbents with optimized porosity are capable of separating 10 to 12 polystyrene standards in one chromatographic run utilizing both size exclusion chromatography and hydrodynamic chromatography separation mechanisms.  相似文献   

20.
Silica monoliths coated with functionalised latex particles have been prepared for use in monolithic ion-exchange capillary electrochromatography (IE-CEC) for the separation of inorganic anions. The ion-exchange monoliths were prepared using 70 nm quaternary ammonium, anion-exchange latex particles, which were bound electrostatically to a monolithic silica skeleton synthesised in a fused silica capillary. The resulting stationary phases were characterised in terms of their chromatographic performance and capacity. The capacity of a 50 microm diameter 25 cm latex-coated silica monolith was found to be 0.342 nanoequivalents and 80,000 theoretical plates per column were typically achieved for weakly retained anions, with lower efficiency being observed for analytes exhibiting strong ion-exchange interaction with the stationary phase. The electroosmotic flow (EOF) was reversed after the latex-coating was applied (-25.96 m2 V(-1) s(-1), relative standard deviation (RSD) 2.8%) and resulted in anions being separated in the co-EOF mode. Ion-exchange interactions between the analytes and the stationary phase were manipulated by varying the ion-exchange selectivity coefficient and the concentration of a competing ion (phosphate or perchlorate) present in the electrolyte. Large concentrations of competing ion (greater than 1M phosphate or 200 mM perchlorate) were required to completely suppress ion-exchange interactions, which highlighted the significant retention effects that could be achieved using monolithic columns compared to open tubular columns, without the problems associated with particle-packed columns. The latex-coated silica monoliths were easily produced in bulk quantities and performed reproducibly in acidic electrolytes. The high permeability and beneficial phase ratio makes these columns ideal for micro-LC and preconcentration applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号