首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small-angle neutron scattering (SANS) experiments on sheared aqueous surfactant solutions of tetradecyltrimethylammoniumsalicylate (TTMA-Sal) are reported. A5-mM-solution without shear shows a weak correlation peak at a momentum transfer of 0.09 nm–1 which has its origin in the micellar interaction. For shear rates above a threshold value of =40 s–1 the scattering pattern shows an irregular increase in anisotropy. The analysis of the anisotropic pattern reveals the existence of two types of micelles: Small rodlike micelles which are weakly aligned and very large rodlike aggregates which are strongly aligned and which are present above the threshold value of. The two micelles are in equilibrium with each other and the equilibrium shifts with increasing shear rate to the side of the large oriented micelles.  相似文献   

2.
Aqueous solutions of the anionic surfactant potassium oleate (K-oleate) were studied using small-angle neutron scattering (SANS), steady-state rheology, and cryogenic transmission electron microscopy (cryo-TEM). The micellar structural changes induced by the addition of potassium chloride (KCl) and sodium polystyrenesulfonate (PSS) of different molecular weights were investigated. Upon addition of KCl, a transition from spherical to wormlike micelles was detected from the SANS data and confirmed by the cryo-TEM pictures. The rheological measurements revealed a strong dependence of the low-shear viscosity on the concentration of salt: a broad maximum in the viscosity curve was observed upon addition of KCl, characteristic of the growth of micelles into long worms, followed by branching. The addition of PSS to salt-free solutions of K-oleate had a significant effect on the scattering patterns, revealing partial growth of the spherical micelles into rodlike micelles. In contrast, in the presence of high salt concentrations, addition of PSS to solutions of wormlike micelles did not bring any noticeable modifications in the scattering. However, in the same salt conditions, a clear effect was observed on the low shear viscosity upon addition of PSS, which was found to depend significantly on molecular weight. This suggests a novel way of impacting the viscosity of solutions of wormlike micelles.  相似文献   

3.
Aqueous micellar solutions of the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) and sodium nitrate (NaNO(3)) were examined using steady and dynamic rheology, small-angle neutron scattering (SANS) and cryogenic-transmission electron microscopy (cryo-TEM). Upon addition of NaNO(3), the CTAB spherical micelles transform into long, flexible wormlike micelles, conveying viscoelastic properties to the solutions. The zero-shear viscosity (eta(0)) versus NaNO(3) concentration curve exhibits a well-defined maximum. Likewise, upon increase in temperature, the viscosity decreases. Dynamic rheological data of the entangled micellar solutions can be well described by the Maxwell model. Changes in the structural parameters of the micelles with addition of NaNO(3) were inferred from SANS measurements. The intensity of scattered neutrons at the low q region was found to increase with increasing NaNO(3) concentration. This suggests an increase in size of the micelles and/or decrease of intermicellar interactions with increasing salt concentration. Analysis of the SANS data using prolate ellipsoidal structure and Yukawa form of interaction potential between micelles indicates that addition of NaNO(3) leads to a decrease in the surface charge of the ellipsoidal micelles and consequently an increase in their length. The structural transition from spherical to entangled threadlike micelles, induced by the addition of NaNO(3) to CTAB micelles is further confirmed by cryo-TEM.  相似文献   

4.
Micellization behavior of amphiphilic diblock copolymers with strong acid groups, poly(hydrogenated isoprene)-block-poly(styrenesulfonate), was investigated by small-angle neutron scattering (SANS). We have reported previously (Kaewsaiha, P.; Matsumoto, K.; Matsuoka, H. Langmuir 2005, 21, 9938) that this strongly ionic amphiphilic diblock copolymer shows almost no surface activity but forms micelles in water. In this study, the size, shape, and internal structures of the micelles formed by these unique copolymers in aqueous solution were duly investigated. The SANS data were well described by the theoretical form factor of a core-shell model and the Pedersen core-corona model. The micellar shape strongly depends on the hydrophobic chain length of the block copolymer. The polymer with the shortest hydrophobic chain was suggested to form spherical micelles, whereas the scattering curves of the longer hydrophobic chain polymers showed a q-1 dependence, reflecting the formation of rodlike micelles. Furthermore, the addition of salt at high concentration also induced the sphere-to-rod transition in micellar shape as a result of the shielding effect of electrostatic repulsion. The corona thickness was almost constant up to the critical salt concentration (around 0.2 M) and then decreased with further increases in salt concentration, which is in qualitatively agreement with existing theories. The spherical/rodlike micelle ratio was also constant up to the critical salt concentration and then decreased. The micelle size and shape of this unique polymer could be described by the common concept of the packing parameter, but the anomalously stable nature of the micelle (up to 1 M NaCl) is a special characteristic.  相似文献   

5.
Highly concentrated micelles in CTAB/NaSal solutions with a fixed salt/surfactant ratio of 0.6 have been studied using Small Angle Neutron Scattering (SANS) as a function of temperature and concentration. A worm-like chain model analysis of the SANS data using a combination of a cylindrical form factors for the polydisperse micellar length, circular cross-sectional radius with Gaussian polydispersity, and the structure factor based on a random phase approximation (RPA) suggests that these micelle solutions have a worm-like micellar structure that is independent of the concentration and temperature. The size of the micelle decreases monotonically with increasing temperature and increases with concentration. These observations indicate that large micelles are formed at low temperature and begin to break up to form smaller micelles with increasing temperature.  相似文献   

6.
The effect of the addition of sodium 4-styrenesulfonate (SSS) and KNO3 as well as temperature and shear rate on the structural transition of aqueous micellar solutions of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) was studied by viscosity. The effect of hydrocarbons on viscoelastic CTAB solutions was also examined. Possible mechanism for formation of CTAB wormlike micelles in the presence of sodium 4-styrenesulfonate (SSS) and KNO3 was discussed. The rapid increase in the apparent viscosity of CTAB solutions on the addition of SSS and KNO3 was due to the transition in micellar shape from spheres to wormlike ones. The rheological properties of CTAB solutions fit Maxwell model at low shear frequency. AFM image indicated a structure of transient network of CTAB/SSS/KNO3/H2O solution.  相似文献   

7.
The influence of ionic environment on the rheological properties of aqueous cetyltrimethylammonium p-toluene sulfonate (CTAT) solutions has been studied under three different flow fields: simple shear, opposed-jets flow and porous media flow. Emphasis was placed in the experiments on a range of CTAT concentration in which wormlike micelles were formed. It is known that these solutions exhibit shear thickening in the semi-dilute regime, which has been explained in terms of the formation of shear-induced, cooperative structures involving wormlike micelles. In simple shear flow, the zero shear viscosity exhibits first an increase with salt addition followed by a decrease, while the critical shear rate for shear thickening increases sharply at low salt contents and tends to saturate at relatively high ionic strengths. The results are explained in terms of a competition between micellar growth induced by salt addition and changes in micellar flexibility caused by ionic screening effects. Dynamic light scattering results indicate that micelles grow rapidly upon salt addition but eventually achieve a constant size under static conditions. These observations suggest that the wormlike micelles continuously grow with salt addition, but, as they become more flexible due to electrostatic screening, the wormlike coils tend to adopt a more compact conformation. The trends observed in the apparent viscosities measured in porous media flows seem to confirm these hypotheses-but viscosity increases in the shear thickening region-and are magnified by micelle deformation induced by the elongational nature of the local flow in the pores. In opposed-jets flow, the solutions have a behavior that is close to Newtonian, which suggests that the range of strain rates employed makes the flow strong enough to destroy or prevent the formation of cooperative micellar structures.  相似文献   

8.
The effects of the concentration of inert organic salts, [MX], (MX=2-, 3- and 4-BrBzNa with BrBzNa=BrC(6)H(4)CO(2)Na) on the rate of piperidinolysis of ionized phenyl salicylate (PS(-)) have been rationalized in terms of pseudophase micellar (PM) coupled with an empirical equation. The appearance of induction concentration in the plots of k(obs) versus [MX] (where k(obs) is pseudo-first-order rate constants for the reaction of piperidine (Pip) with PS(-)) is attributed to the occurrence of two or more than two independent ion exchange processes between different counterions at the cationic micellar surface. The derived kinetic equation, in terms of PM model coupled with an empirical equation, gives empirical parameters F(X/S) and K(X/S) whose magnitudes lead to the calculation of usual ion exchange constant K(X)(Br) (=K(X)/K(Br) with K(X) and K(Br) representing cationic micellar binding constants of counterions X(-) and Br(-), respectively). The value of F(X/S) measures the fraction of S(-) (=PS(-)) ions transferred from the cationic micellar pseudophase to the aqueous phase by the optimum value of [MX] due to ion exchange X(-)/S(-). Similarly, the value of K(X/S) measures the ability of X(-) ions to expel S(-) ions from cationic micellar pseudophase to aqueous phase through ion exchange X(-)/S(-). This rather new technique gives the respective values of K(X)(Br) as 8.8±0.3, 71±6 and 62±5 for X(-)=2-, 3- and 4-BrBz(-). Rheological measurements reveal the shear thinning behavior of all the surfactant solutions at 15mM CTABr (cetyltrimethylammonium bromide) indicating indirectly the presence of rodlike micelles. The plots of shear viscosity (η) at a constant shear rate (γ), i.e. η(γ), versus [MX] at 15 mM CTABr exhibit maxima for MX=3-BrBzNa and 4-BrBzNa while for MX=2-BrBzNa, the viscosity maximum appears to be missing. Such viscosity maxima are generally formed in surfactant solutions containing long stiff and flexible rodlike micelles with entangled and branched/multiconnected networks. Thus, 15 mM CTABr solutions at different [MX] contain long stiff and flexible rodlike micelles for MX=3- and 4-BrBzNa and short rodlike micelles for MX=2-BrBzNa.  相似文献   

9.
The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.  相似文献   

10.
The spectral and redox behavior of bis(diimine)copper(II) complexes, where diimine is bipyridine, 1,10-phenanthroline, 4-methyl-1,10-phenanthroline, 5-methyl-1,10-phenanthroline, 5-nitro-1,10-phenanthroline, 4,7-dimethyl-1,10-phenanthroline, 5,6-dimethyl-1,10-phenanthroline, 2,9-dimethyl-1,10-phenanthroline, 3,4,7,8-tetramethyl-1,10-phenanthroline and dipyrido-[3,2-d:2',3'-f]-quinoxaline, are significantly different in aqueous and in aqueous SDS, CTAB and Triton X-100 micellar solutions. The (1)H NMR spectral study in aqueous (D(2)O) and aqueous micelles reveals that the Cu(II) complexes interact more strongly with SDS than with CTAB and Triton X-100 micelles and at sites on SDS micelles different from those on the latter. Ligand Field spectral studies reveal that the complexes exist as the dicationic aquated species [Cu(diimine)(2)(H(2)O)(2)](2+), which interacts strongly with the anionic SDS micelles through columbic forces. However, they exist as [Cu(diimine)(2)(H(2)O)Cl](+) and/or [Cu(diimine)(2)H(2)] located in the hydrophobic microenvironments in Triton X-100 and CTAB micelles. The attainment of reversibility of the redox systems in the micellar microenvironments is remarkable and this illustrates that the Cu(II) and Cu(I) species undergo stereochemical changes suitable for reversible electron-transfer. The remarkable differences in spectral and electrochemical properties of Cu(II) complexes in aqueous and aqueous micellar solutions illustrate that the complexes are nestled largely within the micellar environments and imply that the accessibilities of the complexes to electron-transfer are different and are dependent on the nature of micelles as well as the nature and hydrophobicity of the diimine ligands.  相似文献   

11.
Wormlike micellar octadecyl trimethyl ammonium chloride (OTAC) solution is a self-assembled fracturing fluid used to carry proppants into fractures in oil recovery. Slow settling velocity of proppant is desirably resulted from the viscoelastic drag with low viscosity of fracturing fluids for fracturing work. Steel spheres, as a substitute for proppants, fall into three semi-dilute OTAC solutions. The steady rheology demonstrates that OTAC solutions are divided into shear-thickening and shear-thinning regimes by the critical shear rate. The applied steel spheres always lie in the shear-thickening regime of the 2.8 wt% OTAC solution with aggregated micelles as their characteristic shear rates are less than the critical shear rate of the solution. Strong shear-thickening viscous drag results in lower settling velocity of steel spheres. Most of the applied steel spheres, on the other hand, lie in the shear-thinning regime of the 4 wt% OTAC solution with orientated micelles. Although the latter solution has small dissipation coefficient, high Weissenberg number, and consequently high elastic effect, the shear-thinning viscosity results in higher settling velocity of steel spheres.  相似文献   

12.
The self-assembly into wormlike micelles of a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer Pluronic P84 in aqueous salt solution (2 M NaCl) has been studied by rheology, small-angle X-ray and neutron scattering (SAXS/SANS), and light scattering. Measurements of the flow curves by controlled stress rheometry indicated phase separation under flow. SAXS on solutions subjected to capillary flow showed alignment of micelles at intermediate shear rates, although loss of alignment was observed for high shear rates. For dilute solutions, SAXS and static light scattering data on unaligned samples could be superposed over three decades in scattering vector, providing unique information on the wormlike micelle structure over several length scales. SANS data provided information on even shorter length scales, in particular, concerning "blob" scattering from the micelle corona. The data could be modeled based on a system of semiflexible self-avoiding cylinders with a circular cross-section, as described by the wormlike chain model with excluded volume interactions. The micelle structure was compared at two temperatures close to the cloud point (47 degrees C). The micellar radius was found not to vary with temperature in this region, although the contour length increased with increasing temperature, whereas the Kuhn length decreased. These variations result in an increase of the low-concentration radius of gyration with increasing temperature. This was consistent with dynamic light scattering results, and, applying theoretical results from the literature, this is in agreement with an increase in endcap energy due to changes in hydration of the poly(ethylene oxide) blocks as the temperature is increased.  相似文献   

13.
In this article, we consider the effects of sodium salicylate on the microstructure evolution and rheological responses of an aqueous cetyltrimethylammonium bromide (CTAB) solution. The experimental runs covered CTAB solutions ranging from dilute to semidilute, which were far above its critical micelle concentration. Sodium salicylate (NaSal) was used as a structure-forming agent with the molar ratio of NaSal to CTAB ranging from 0.1 to 10.0. The experimental results showed that the rheological responses of the surfactant solution were influenced strongly by both the CTAB concentration and the molar ratio. At low molar ratios, below 0.3, the surfactant solutions behaved like a Newtonian fluid. However, as the molar ratio increased, the deviation from Newtonian behavior became pronounced. Specifically, for 0.05 M CTAB solutions with molar ratios ranging from 1.0 to 5.0, an apparent yield stress developed at low shear rates and a stress plateau was displayed at intermediate shear rates. When the shear rate exceeded a certain threshold value, the shear stress increased, again passing over the plateau value. In addition, viscoelastic response and relaxation behavior were observed. The relaxation behavior after the cessation of flow was strongly dependent on the molar ratio, which was also confirmed by rheo-optical observations. The optical anisotropy measured by rheo-optical methods was closely related to flow-induced stretching and alignment of the wormy micelles and was consistent with the rheological responses. Copyright 2000 Academic Press.  相似文献   

14.
Concentrated (typically 6%) solutions of a polystyrene-polyisoprene diblock copolymer in low viscosity paraffinic solvents form a micelle system by precipitating the polystyrene blocks, whereas the polyisoprene blocks are in solution. Besides viscoplastic behavior without thixotropy, this system exhibits a pronounced shear thickening in steady-state shear flow. The micelles are stable up to shear rates of more than 105 s–1. The properties of the solutions, especially the shear-thickening behavior, depend on the thermal history of the samples as well as on the solvent properties and are sensitive to flow field disturbances occurring in rotational viscometer devices with a profiled surface structure as commonly used to avoid wall slip in dispersed materials. The shear thickening is found to be related to the formation of a long-range ordered structure which also gives rise to the yield point. This long-range order enables aggregate flow with less energy dissipation at low shear rates. Shear-induced break-up of the aggregates appears as a shear-thickening transition which is observed in different types of flow fields.  相似文献   

15.
The electrochemical behavior of an anthraquinone (AQ) was studied in aqueous solutions at a glassy carbon electrode, using the sodium salt of anthraquinone-2-sulfonic acid (AQS), by employing cyclic voltammetry. AQ undergoes a two-electron reduction in aqueous media. The electrochemical behavior of AQ was also investigated in micelles, reverse micelles (CTAB/1-butanol/water), and microemulsions (CTAB/1-butanol/water/cyclohexane) of cetyltrimethylammonium bromide (CTAB). The electrode reactions of AQ in reverse micelles and microemulsions are nearly reversible at low oil (cyclohexane) content. However, at higher oil content, the reversibility is gradually lost. In the case of reverse micelles, the reduction current, as well as the reduction potential, of AQ depend on the transition from a micellar solution to a stable solution of reverse micelles that occurs with added 1-butanol. In microemulsions, the change in cyclohexane content was found to cause a linear increase in the peak current for AQ reduction as well as a linear decrease in the corresponding reduction potential. As the cyclohexane content is increased, the o/w microemulsions dominated by micelles undergo a transition to a w/o microemulsion dominated by reverse micelles, which causes changes in the electrochemical behavior.  相似文献   

16.
The cleavage of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP) catalyzed by the Zn(II)-biap (biap: N,N-bis(2-ethyl-5-methylimidazole-4-ylmethyl)aminopropane) complex has been investigated spectrophotometrically in a micellar solution of cationic Gemini surfactant 16-2-16 [bis(hexadecyldimethylammonium)ethane bromide] and CTAB (hexadecyltrimethylammonium bromide) at 25+/-0.1 degrees C. The experimental results reveal that a higher rate of acceleration (about 2016-fold) of HPNP cleavage promoted by the Zn(II)-biap complex has been observed in the 16-2-16 micellar solution in comparison with the background rate (k(0)) of HPNP spontaneous cleavage at 25 degrees C. Reaction rates of HPNP cleavage in CTAB micellar solutions are only about 40% of that in Gemini 16-2-16 micelles under comparable conditions. In addition, the cleavage rates of HPNP in Gemini micelles and in CTAB micelles are respectively 29.5 times and 12 times faster than that in aqueous buffer. Especially, a "sandwich absorptive mode" has been proposed to explain the acceleration of HPNP cleavage in a cationic micellar solution.  相似文献   

17.
It is well-known that solutions of cetyltrimethylammonium p-toluenesulfonate in water exhibit a pronounced shear-thickening phenomenon in a specific concentration range (0.1-0.8%) when they are subjected to simple-shear flows, as a consequence of flow-induced self-assembly of wormlike micelles. This work shows that a strong elongational flow field (opposed-jets flow), applied to the same solutions, does not lead to extension thickening because the extensional flow prevents or destroys micellar association. In flow through a porous medium, a substantial increase in apparent viscosity is observed beyond a critical apparent shear rate, which surpasses increases observed in simple-shear flows. This is explained as the result of a synergistic effect of shear and relatively weak elongation on the solution microstructure.  相似文献   

18.
The linear and nonlinear rheology of viscoelastic mixed anionic-zwitterionic surfactant solutions has been systematically investigated. In the linear viscoelastic regime, these systems display nearly Maxwellian behavior with a unique relaxation time, tau0, and a characteristic elastic plateau modulus, G0. Linear rheological data were used to calculate the repitation and breaking times of the micelles, tau(rep) and tau(b), respectively. Surprisingly, the elastic modulus G0 significantly increases with salt concentration c(s), whereas tau(b) decreases by 1 order of magnitude. The strong effect of c(s) on the material parameters and microstructure of rodlike micelles allowed for the systematic investigation of the effect of these parameters on nonlinear flow. For samples with relatively long tau(b), the quasi-static flow diagram (stress vs shear rate) shows a stress peak followed by a metastable branch (a region of decreasing shear stress), whereas for samples with relatively short tau(b), this phenomenon is not observed. Transient flow responses corroborate quasi-static flow findings and further reveal the significance of microscopic dynamic parameters on flow behavior. Shear stress time series were recorded at constant shear rates, and above a critical shear rate, gamma(c2), stress fluctuations are observed. The amplitude of these stress fluctuations, Delta sigma, was found to scale as Delta sigma approximately equal to G0(tau(b)| gamma - gamma(c2)|)beta with beta approximately 0.5. This scaling is observed for micellar systems with tau(b) ranging from 0.12 to 0.01 s and G0 ranging from 1 x 10(3) to 7 x 10(3) dyn/cm2.  相似文献   

19.
NMR self-diffusion coefficient measurements have been used to study the properties of polyethylene glycol (23) lauryl ether (Brij-35) with cetyltrimethylammonium bromide (CTAB) in the mixed aqueous solutions with different mole fractions of CTAB. By fitting the self-diffusion coefficients to the two-state exchange model, the critical micelle concentrations of the two solutes in the mixed solutions (cmc*1 and cmc*2) were obtained. The critical mixed micelle concentrations (cmc*) were then evaluated by the sum of cmc*1 and cmc*2, which are in good agreement with the results measured by the surface tension method. The cmc* values are lower than those of the ideal case of mixing, which indicates that the behavior of the CTAB/Brij-35 system is nonideal. Moderate interactions between CTAB and Brij-35 in their mixtures can be deduced from the interaction parameters (betaM) based on the cmc* obtained by the NMR self-diffusion method. The compositions (x1) of the mixed micelles at different total surfactant concentrations were also evaluated. By using these results, a possible mechanism of mixed micellar formation and a picture of the formation of nonsimultaneous CTAB/Brij-35 binary mixed micelle were proposed. In contrast to the case of CTAB/TX-100 system, Brij-35 molecules have a tendency to form micelles first at any mole fraction of CTAB. The mixed micellar self-diffusion coefficients (Dm) increase slightly at lower CTAB molar ratios, and then speed up with increasing CTAB mole fraction.  相似文献   

20.
It was shown that the addition of organic electrolytes to aqueous solutions of morpholinium surfactants facilitates micellization, reduces the micellar surface potential, increases the hydrodynamic diameter of micelles and favors the formation of cylindrical micelles which behave as pseudoplastic fluids. At low shear rates, the viscosity is extremely large and changes insignificantly, and it decreases sharply with increase in shear rate. Significant decrease in viscosity upon the increase in shear deformations indicates the orientation of cylindrical micelles along the direction of the flow with the increase in shear rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号