首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary It is shown experimentally that in size exclusion chromatography theh-values of a homologous series versus the relative molecular mass of the samples and the pore size distribution of the packing material determined by exclusion chromatography exhibit the same maximum.Part of the Ph.D. Thesis of W. Werner, University of Saarbrücken, Saarbrücken 1976.  相似文献   

2.
Temperature gradient interaction chromatography (TGIC) is an interactive polymer chromatography technique varying the column temperature during the elution in a programmed manner to control the solute retention. In the present paper, the effect of the pore size of packing materials on the molecular-weight separation of polystyrene and poly(methyl methacrylate) standard samples by TGIC was studied by using the columns (octadecyl modified silica) with different pore size (100, 300 and 1000 Å) and eluent mixture of CH2Cl2/CH3CN. By rising temperature gradient, both polymers were separated by molecular weight from lower to higher. It became clear that each sample elutes out earlier as the pore size is larger. These experimental results could be explained by the theory based on the scaling concept of Gorbunov and Skvortsov.  相似文献   

3.
Simultaneous use of large standard molecules and small particles of the product examined gives rise to errors in pore size determination by size exclusion chromatography. This error is calculated for packings of spherical particles, thus making corrections possible.  相似文献   

4.
This paper describes the preparation and investigation of new, highly loaded, monomeric, silica based, reversed phase C18 and C30 packings. The influence of pore structure and endcapping on the properties of C18 and C30 packings is described. Using hydrothermal procedures, silicas with predictable pore size (9.3-25.5 nm) and surface area have been prepared. Silylation with long chain silanes substantially alters the pore structure of the silica: pore size and pore volume decrease. A new parameter, the volumetric surface coverage [mm3 x m(-2)] has been introduced. This parameter--calculated from on-column measured porosity data--indicates the pore volume portion occupied by the hydrocarbon chains. Endcapping does not significantly change the pore structure of the bonded phases. The reduced retentions (reduced with respect to unit area: [k/m2])--a good measure for comparing the retention behaviour of packings with different surface areas--are similar for most of the phases, demonstrating good accessibility of the pores for the solutes. Slightly lower retentions were found on the endcapped than on the non-endcapped phases for probes with dense pi-electron system (e.g. polyaromatic hydrocarbons) demonstrating the contribution of silanophilic interactions to the retention. The phases had been successfully used for various demanding separations, e.g. for the separation of flavonoids, carotenoids, resveratrol, and tocopherol isomers, fullerenes, and anions.  相似文献   

5.
Caustic regeneration procedures are often used in chromatographic purification processes of peptides and proteins to remove irreversibly bound impurities from the stationary phase. Silica-based materials are the most commonly used materials in reversed phase chromatography of peptides. Their limited chemical stability at high pH can be, however, problematic when high pH column regeneration (i.e. cleaning in place) is required. The effect of cleaning in place on the surface chemistry of the stationary phase has been investigated using the Tanaka test. It has been shown that the high pH treatment does not significantly affect the hydrophobicity of the material, but it strongly increases its silanol activity. A representative peptide purification process has been used to investigate the impact of cleaning in place on the separation performance. It has been shown that the caustic regeneration increases the peptide retention at high pH (pH 6.5), due to the interactions between the peptide and the negatively charged silanol groups. These unwanted interactions reduce the separation performances by decreasing the selectivity between the late eluting impurities and the main peptide. However, it has been shown that the effect of the silanol groups on the peptide adsorption and on the separation performance can be minimized by carrying out the purification process at low pH (pH ∼ 2). In this case, the silanol groups are protonated and their electrostatic interactions with the positively charged analyte (i.e. peptides) are suppressed. In these conditions, the peptide adsorption and the impurity selectivity is not changing upon high pH column regeneration and the separation performance is not affected.  相似文献   

6.
Polyethersulfone (PES) hollow fiber membranes for kidney dialysis application were prepared by the dry-jet wet-spinning method. A dual-coagulation bath technology was first time employed for fabricating the kidney dialysis membranes with a tight inner skin and loose outer supporting layer structure. A weak coagulant isopropanol (IPA) was served as the first external coagulation bath, while water as the second bath. Experiments demonstrate their advantages of better controlling both inner and outer skin morphology. The as-spun fibers have a higher mean effective pore size (μp), pure water permeation flux (PWP) and molecular weight cut-off (MWCO) with an increase in N-methyl-2-pyrrolidone (NMP) percentage in bore fluid (i.e., internal coagulant). After being treated in 8000 ppm NaOCl solution for 1 day, fibers show larger pore sizes and porosity in both inner and outer surfaces, and thinner inner and outer layers than their as-spun counterparts. Among them, the bleached fibers spun with 50 wt.% NMP in bore fluid have the MWCO (43 kDa) and PWP (40 × 10−5 L m−2 Pa−1 h−1) suitable for kidney dialysis application. Based on SEM observations and solute rejection performance, the further heat treated fibers in an aqueous solution is found to be an effective way to fine tune membranes morphology and MWCO for kidney dialysis application. The solute rejection performance data of the hollow fiber membranes spun with 55 wt.% NMP in bore fluid after heat treated at 90 °C in water for 2 h were found to be very appropriate for the kidney dialysis application.  相似文献   

7.
Increased recombinant protein expression yields and a large installed base of manufacturing facilities designed for smaller bulk sizes has led to the need for high capacity chromatographic resins. This work explores the impact of three pore sizes (with dextran distribution coefficients of 0.4, 0.53, and 0.64), dextran surface extender concentration (11–20 mg/mL), and ligand density (77–138 μmol H+/mL resin) of cation exchange resins on the dynamic binding capacity of a therapeutic antibody. An intermediate optimal pore size was identified from three pore sizes examined. Increasing ligand density was shown to increase the critical ionic strength, while increasing dextran content increased dynamic binding capacity mainly at the optimal pore size and lower conductivities. Dynamic binding capacity as high as 200 mg/mL was obtained at the optimum pore size and dextran content.  相似文献   

8.
G. R. Birkett  D. D. Do 《Adsorption》2007,13(5-6):407-424
In this paper we present a series of work covering a range of aspects relating molecular simulation to experiment. The importance of surface mediation type effects to the adsorption of simple and complex gases is demonstrated. Coupled with the adsorption of simple gases is their projection area when used for surface area determination. The pressure dependence of a projection area is demonstrated for argon at 77 and 87.3 K. A simple model is used to account for the degree of graphitisation of a surface is demonstrated and used to account for the isosteric heat behaviour of non-graphitised carbon blacks. Turning from surfaces to porous solids, an alternative treatment of experiment data (either sub or super critical) is presented that avoids the ambiguity of excess amounts adsorbed. Using this method one is able to obtain pore size distributions and amounts adsorbed without relying on such things as helium expansion volumes. Since this type of method is usually applied to composite solids we also demonstrate the correct method for calculating the heat of adsorption using independent sets of simulations. The final topic covered in this paper is an example of the information that can be gained from the heat capacity of an adsorbed phase.  相似文献   

9.
Three dihalogenic solvents differing in the length of alkyl chain (1,2‐dichloroethane, 1,4‐dichlorobutane, and 1,6‐dichlorohexane) with three Friedel–Crafts alkylation catalysts varying in reactivity (AlCl3, FeCl3, and SnCl4) have been used to prepare hypercrosslinked poly(styrene‐co‐vinylbenzyl chloride‐co‐divinylbenzene) columns. Hydrodynamic characteristics as well as column efficiency and mass transfer resistance were tuned by the combination of swelling solvent and alkylation reaction catalyst in the modification mixture. The column swelled in 1,6‐dichlorohexane and hypercrosslinked in the presence of AlCl3 provided the highest column efficiency and enabled fast isocratic separations of small molecules in a RP mode. To uncover factors controlling the efficiency of hypercrosslinked monolithic columns, we have studied pore volume distribution of prepared columns. We found that column efficiency increases with the higher pore volume of pores smaller than 2 nm.  相似文献   

10.
The application of nitrogen adsorption, mercury porosimetry and inverse gas chromatography (IGC) for the examination of surface physical and chemical properties of hybrid materials is discussed. Hybrid materials were prepared from tetraethoxysilane (TEOS), tetrabutyl orthotitanate (TBOT), and hydroxyl terminated polydimethyl siloxane (PDMS) for different TBOT concentrations. It was found that TBOT affects specific surface areas, pore volumes and pore sizes, but does not affect pore morphology. Surface chemical properties were analyzed by IGC. It was found that the dispersive surface energy was a function of the material pore size. Values between 36 and 42 mJ···m-2 were obtained for the dispersive surface energy which are consistent with those of hybrid materials. On the other hand, the acid-base (k , k ) surface constants showed good correlation with the TBOT concentration. These materials can be considered as anphoteric ones, and it was found that k increases from 1.07 to 1.47, and k increases from 0.76 to 1.73 when the TBOT concentration increases from 0 to 7%. Such increase is assigned to the formation of Si–O–Ti bonds as it was deduced from an IR band appearing at 930 cm-1 in the FT-IR spectra.  相似文献   

11.
We reported here the simultaneous influence of surface acidity and pore size of Al-substituted hexagonal mesoporous silicas(Al-doped plugs-containing SBA-15 and Al-doped MCM-41) on polymerization of THF.These materials were directly synthesized by introduced aluminum isopropoxide into reaction mixture including surfactant and siliceous precursor.Al-doped plugs-containing SBA-15(denotes as PAS) samples not only possess typical two-step desorption isotherms,which implied PAS materials generated plugs in their mesochannel,but also exhibit larger pore size and thicker wall than that of Al-doped MCM-41(denotes as ACM), which implied PAS would have a great advantage on catalytic reaction involving large molecular(e.g.polymer of THF) in industrial point of view.To investigate catalytic activity of PAS and ACM with moderate acidic sites the polymerization of THF in the presence of acetic anhydride was carried out.The results showed PAS exhibiting good performance on polymerization of THF.Such result could be related to the large pore size and moderate acidic sites.  相似文献   

12.
Electrospun carbon fibers were prepared as a methane storage medium. Chemical activation was carried out using potassium carbonate to develop the pore structure, which can provide sites for the uptake of methane, and then fluorination surface modification was conducted to enhance the capacity of storage. Chemical activation provided a highly microporous structure, which is beneficial for methane storage, with a high specific surface area greater than 2500 m2/g. The pore size distribution showed that the prepared samples have pore sizes in the range of 0.7–1.6 nm. The effect of fluorination surface modification was also investigated. The functional groups, which were confirmed by XPS analysis, played an important role in guiding methane gas into the carbon silt pores via the attractive force felt by the electrons in the methane molecules due to the high electronegativity of fluorine. Eventually, the methane uptake increased up to 18.1 wt.% by the synergetic effects of the highly developed micropore structure and the guiding of methane to carbon pores by fluorine.  相似文献   

13.
A new method called constant pressure liquid displacement method (CPLM) was developed and tested to measure the pore size distribution of porous membranes. The permeability, defined as a ratio of the flow rate to the pressure applied, used to be assumed constant either for a conventional liquid displacement method or for a bubble point method, leading to the erroneous interpretation of the pore size distribution. However, it was possible to eliminate such an assumption by measuring the flow rates experimentally at a standard low pressure through the pores penetrated with a permeating liquid according to the proposed method. The pore size distribution for a hydrophobic PVDF membrane was successfully measured by the CPLM and compared with those measured by two different methods such as the conventional liquid displacement method and the mercury intrusion method.  相似文献   

14.
Immunoglobulin G is an important plasma protein with many applications in therapeutics and diagnostics, which can be purified effectively by ion exchange chromatography. The ligand densities and pore properties of ion-exchange resins have significant effects on the separation behaviors of protein, however, the understandings are quite limited. In this work, with bovine immunoglobulin as the model IgG, the adsorption isotherms and adsorption kinetics were investigated systematically with series of diethylaminoethyl ion-exchange resins with different ligand densities and pore sizes. The Langmuir equation and pore diffusion model were used to fit the experimental data. The influences of ligand density and pore size on the saturated adsorption capacity, the dissociation constant and the effective diffusivity were discussed. The adsorption capacities increased with the increase of ligand density and the decrease of pore size, and an integrative parameter was proposed to describe the combined effects of ligand density and pore size. It was also found that the effective pore diffusion coefficient of the adsorption kinetics was influenced by pore sizes of resins, but was relatively independent on the ligand densities of resins. For a given protein, the ligand density and pore size should be optimized for improving the protein adsorption.  相似文献   

15.
Grand canonical Monte Carlo and configurational bias Monte Carlo techniques were employed to simulate the adsorption of binary mixtures of butane isomers and quaternary mixtures in nine zeolites at 300 K. For binary mixtures the results show there is a critical pore size, which is 10-membered-ring about 5.6 Å. The channel sizes of BEA, ISV, MOR and CFI are larger than this critical pore size, they prefer i-butane than n-butane, whereas TON with smaller channel size than critical pore size prefers n-butane than i-butane, but its selectivity decreases with pressure increasing. MFI, MEL and TER prefer i-butane than n-butane at low pressure, but with pressure increasing, the selectivity is reversed. BOG prefers i-butane than n-butane but the selectivity decreased with pressure increasing. It demonstrates that the adsorption and selectivity are controlled by both pore size and pore structure. The n-butane–i-butane–n-pentane–2-methylbutane quaternary mixtures adsorbed in these nine zeolites were studied, and the results show alkane chain length dependence at low pressure, but the adsorption is controlled by pore size and structure with pressure increasing in all the zeolites except for TON and BOG.  相似文献   

16.
Resorcinol-formaldehyde (RF) xerogels are organic materials have been widely studied due to their industrially relevant characteristics, through which, RF gels have significant potential to be tailored to specific applications. Xerogel properties have been tailored, within this study, by altering the synthesis procedure with a focus on monomer concentrations, catalyst to monomer ratio, and the introduction of a nitrogen-rich precursor, thereby incorporating nitrogen into the structure to additionally affect the chemical properties of the final gel. Melamine (M) is used as the source of nitrogen, partially replacing the resorcinol (R) typically used, and resulting in a melamine-resorcinol-formaldehyde (MRF) gel; synthesis was facilitated by a sodium carbonate catalyst (C), as often used in RF gel production. R/C and R/F molar ratios, and M concentration ([M]), were chosen as parameters to study in-depth, as they have previously been shown to markedly influence sol-gel formation. The MRF gels produced were subsequently characterized to determine porous structure and chemical functionality. The results indicate that, texturally, increasing [M] produces a similar effect as increasing R/C values: increasing pore size, while decreasing surface area. Pore volume tends to increase when R/C or M increase individually but pore volume and surface area decrease drastically when both variables increase concurrently. Microporosity also tends to increase as R/C decreases, and as the concentration of M is decreased. Altering the gel matrix, by replacing M for R, results in a weakening of the gel structure, as the bridges formed during curing are reduced in quantity, which indicates a maximum level of substitution that can occur within these materials. Combined, these results suggest that nitrogen can be successfully incorporated into organic gel structures but that the interplay between process variables is crucial in determining final gel characteristics for specific applications.  相似文献   

17.
Non-contact atomic force microscopy has been used to investigate the surface pore structure of Cyclopore and Anopore microfiltration membranes in air. Three Cyclopore membranes and three Anopore membranes of different pore sizes were studied. Excellent high resolution images were obtained. Analysis of the images gave quantitative information on the surface pore structure, in particular the pore size distribution. Non-contact AFM is an excellent means of obtaining such information for microfiltration membranes.  相似文献   

18.
A cation exchange chromatographic purification process step was developed for the purification of human PEGylated PYY 3–36 from the PEGylation reaction mixture. In this publication we describe experiments carried out to evaluate the chromatographic performance of arginine chloride as an effective cation exchange chromatography eluent. Using arginine we obtained improved recovery and resolution during chromatographic purification of a peptide PEGylation reaction mixture. The chromatographic elution performance of arginine was compared to other cationic amino acids and sodium chloride. Arginine provided higher yield and better resolution of product from other process impurities. The process was successfully scaled up to produce clinical supplies. The basis for improvement in process performance with arginine was characterized by examining the effect of buffer and concentration of the PEGylated peptide on hydrodynamic volume of the molecule in solution. These results were used to predict the behavior of the molecule in the chromatography process. The enhanced chromatographic performance could be attributed to changes in molecular size with concentration, higher eluent strength of arginine, and resulting changes in mass transfer resistance.  相似文献   

19.
The hindered diffusion and binding of proteins of different sizes (lysozyme, BSA and IgG) in an agarose gel is described using adsorption kinetic and diffusional data together with an experimentally determined pore size distribution in the gel. The validity of the pore model, including variable diffusion coefficients and porosities is tested against experimental confocal microscopy data. No fitting parameters were used in the present model. The importance of knowing the gel structure is demonstrated especially for large proteins such as IgG. Experimental confocal microscopy data can be explained by the present model.  相似文献   

20.
PAN基活性炭纤维的氮吸附研究   总被引:4,自引:0,他引:4  
用相同原料不同活化方法制备聚丙烯腈基活性炭纤维,并对其进行了氮吸附研究.结 果表明,由不同活化方法所制备的活性炭纤维的孔结构存在较大差异,并对随着活化程度的 改变其孔结构的发展进行了研究.结果表明,通过简单的改变活化方法即可以制得不同孔隙占 主导地位的炭质吸附剂;也揭示出,不同的活化方法其活化机理有所差别.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号