首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 1H and 13C chemical shifts for the heme methyls of low-spin, ferric sperm whale cyanometmyoglobin reconstituted with a variety of centrosymmetric and pseudocentrosymmetric hemins have been recorded and analyzed to shed light on the nature of heme-protein contacts, other than that of the axial His, that modulate the rhombic perturbation to the heme's in-plane electronic asymmetry. The very similar 1H dipolar shifts for heme pocket residues in all complexes yield essentially the same magnetic axes as in wild type, and the resultant dipolar shifts allow the direct determination of the heme methyl proton and 13C contact shifts in all complexes. It is demonstrated that, even when the magnetic axes and anisotropies are known, the intrinsic uncertainties in the orientational parameters lead to a sufficiently large uncertainty in dipolar shift that the methyl proton contact shifts are inherently significantly less reliable indicators of the unpaired electron spin distribution than the methyl 13C contact shifts. The pattern of the noninversion symmetry in 13C contact shifts in the centro- or pseudocentrosymmetric hemes is shown to correlate with the positions of aromatic rings of Phe43(CD1) and His97(FG3) parallel to, and in contact with, the heme. These results indicate that such pi-pi interactions significantly perturb the in-plane asymmetry of the heme pi spin distribution and cannot be ignored in a quantitative interpretation of the heme methyl 13C contact shifts in terms of the axial His orientation in b-type hemoproteins.  相似文献   

2.
13C and 1H isotropic shifts have been measured for a series of Fe(III) tris-dithiocarbamate complexes. The 13C isotropic shifts may be interpreted as arising solely from contact hyperfine coupling and demonstrate that as the low-spin state of the metal is favoured there is an increase in metal-ligand π-bonding. σ-delocalization of unpaired spin density is more important in determining the 13C isotropic shifts than those of the contiguous proton.  相似文献   

3.
Tri-O-methylcellulose was prepared from partially O-methylated cellulose and its chemical shifts (1H and 13C), and proton coupling constants were assigned using the following NMR methods: (1) One-dimensional 1H and 13C spectra of the title compound were used to assign functional groups and to compare with literature data; (2) double quantum filtered proton–proton correlation spectroscopy (1H, 1H DQF-COSY) was used to assign the chemical shifts of the network of 7 protons in the anhydroglucose portion of the repeat unit; (3) the heteronuclear single-quantum coherence (HSQC) spectrum was used to establish connectivities between the bonded protons and carbons; (4) the heteronuclear multiple-bond correlation (HMBC) spectrum was used to connect the hydrogens of the methyl ethers to their respective sugar carbons; (5) the combination of HSQC and HMBC spectra was used to assign the 13C shifts of the methyl ethers; (6) all spectra were used in combination to verify the assigned chemical shifts; (7) first-order proton coupling constants data (JH,H in Hz) were obtained from the resolution-enhanced proton spectra. The NMR spectra of tri-O-methylcellulose and other cellulose ethers do not resemble the spectra of similarly substituted cellobioses. Although the 1H and 13C shifts and coupling constants of 2,3,6-tri-O-methylcellulose closely resemble those of methyl tetra-O-methyl-β-D -glucoside, there are differences with regard to the chemical shifts and the order of appearances of the resonating nuclei of the methyl ether appendages and the proton at position 4 in the pyranose ring. H4 in tri-O-methylcellulose is deshielded by the acetal system comprising the β-1→4 linkage, and it resonates downfield. H4 in the permethylated glucoside is not as deshielded by the equitorial O-methyl group at C4, and it resonates upfield. The order of appearance of the 1H and 13C resonances in the spectra of the tri-O-methylcellulose repeat unit (from upfield to downfield) are H2 < H3 < H5 < H6a < H3a < H2a < pro R H6B < H4 < pro S H6A ≪ H1 and C6a < C3a < C2a < C6 < C5 < C4 < C2 < C3 ≪ C1, respectively. Close examination of the pyranose ring coupling constants of the repeat unit in tri-O-methylcellulose supports the 4C1 arrangement of the glucopyranose ring. Examination of the proton coupling constants about the C5-C6 bond (J5,6A and J5,6B) in the nuclear Overhauser effect difference spectra revealed that the C6 O-methyl group is predominantly in the gauche gauche conformation about the C5-C6 bond for the polymer in solution. © 1999 John Wiley & Sons, Inc.* J Polym Sci A: Polym Chem 37: 4019–4032, 1999  相似文献   

4.
A reliable method of automatically assigning one-dimensional proton spectra is described. The method relies on the alignment of the proton spectrum with an associated heteronuclear single-quantum coherence (HSQC) spectrum, transferring the stoichiometry and couplings to the HSQC. The HSQC spectrum is then assigned using a linear assignment procedure in which a fitness function incorporating (1)H chemical shifts, (1)H couplings and (13)C shifts are employed. The method uniquely employs a sequential procedure in which only correlations of like stoichiometry are assigned at the same time.  相似文献   

5.
A series of sterically hindered o-hydroxy Schiff bases derived from o-hydroxyaceto- and benzophenones with very short intramolecular hydrogen bonds were described qualitative and quantitatively by deuterium isotope effects on (13)C chemical shift, (n)DeltaC(XD), (n)DeltaF(XD), (1)J(N,H) coupling constants, deltaNCH(3) chemical shifts and UV spectra. All the investigated compounds are found to be tautomeric. The tautomeric character is described by the signs of the deuterium isotope effects on the (13)C chemical shifts. For the 3-nitro-5-chloro derivatives at low temperature, the equilibrium is shifted almost fully toward the proton transferred form in CD(2)Cl(2). Intrinsic deuterium isotope effects on chemical shifts of these compounds as well as (1)J(N,H) coupling constants suggest that a zwitterionic resonance form is dominant for the proton transferred form. Structures, (1)H, (19)F, and (13)C chemical shifts, and deuterium isotope effects on (13)C chemical shifts are calculated by ab initio methods. The potential energy functions and the total deuterium isotope effects are calculated, and they are shown to correspond well with the experimental findings.  相似文献   

6.
The NMR spectra of a series of beta-substituted iron(III) tetraphenylporphyrin (2-X-TPP) complexes have been studied to elucidate the relationship between the electron donating/withdrawing properties of the 2-substituent and the (1)H NMR spectral pattern. The electronic nature of the substituent has been significantly varied and covered the -0.6 to 0.8 Hammett constant range. Both high-spin and low-spin complexes of the general formula (2-X-TPP)Fe(III)Cl and [(2-X-TPP)Fe(III)(CN)(2)](-) have been investigated. The (1)H NMR data for the following substituents (X) have been reported: py(+), NO(2), CN, CH(3), BzO (C(6)H(5)COO), H, D, Br, Cl, CH(3), NH(2), NH(3)(+), NHCH(3), OH, and O(-). The (1)H NMR resonances for low-spin dicyano complexes have been completely assigned by a combination of two-dimensional COSY and NOESY experiments. In the case of selected high-spin complexes, the 3-H resonance has been identified by the selective deuteration of all but the 3-H position. The pattern of unambiguously assigned seven pyrrole resonances reflects the asymmetry imposed by 2-substitution and has been used as an unique (1)H NMR spectroscopic probe to map the spin density distribution. The pyrrole isotropic shifts of [(2-X-TPP)Fe(III)(CN)(2)](-) are dominated by the contact term. In order to quantify the substituent effect, the dependence of isotropic shift of all low-spin pyrrole resonances and 3-H high-spin pyrrole resonance versus Hammett constants has been studied. The electronic effect is strongly localized at the beta-substituted pyrrole. The major change of the isotropic shift has also been noted for only one of two adjacent pyrrole rings, i.e., at 7-H and 8-H positions. These neighboring protons, located on a single pyrrole ring, experienced opposite shift changes when electron withdrawing/donating properties were modified. Two other pyrrole rings for all investigated derivatives revealed considerably smaller, substituent related, isotropic shift changes. A long-range secondary isotopic shift has been observed for [(2-D-TPP)Fe(III)(CN)(2)](-). The effect is consistent with a general spin density distribution mechanism due to beta-substitution. A fairly good correlation between the 3-H isotropic shift of (2-X-TPP)Fe(III)Cl and the Hammett constant has been found as well. The observed contact shift pattern of [(2-X-TPP)Fe(III)(CN)(2)](-) reflects spin pi delocalization into the highest filled MO equivalent to the unsubstituted porphyrin 3e(pi) orbital. To account for the substituent contribution, the semiquantitative Fenske-Hall LCAO method has been used to determine the molecular orbitals involved in the spin density delocalization. For low-spin complexes, (13)C pyrrole resonances of carbons bearing a proton have been identified by means of a (1)H-(13)C HMQC experiment. The reversed order of (13)C resonance patterns as compared to their (1)H NMR counterparts has been determined, e.g., the largest isotropic shift of 3-H has been accompanied by the smallest measured (13)C isotropic shift. Analysis of the isotropic shifts in (2-X-TPP)Fe(III)Cl and [(2-X-TPP)Fe(III)(CN)(2)](-) suggests that the observed regularities of the electronic structure modification due to the beta-substitution should apply to iron(III) natural porphyrin or geoporphyrin complexes.  相似文献   

7.
1H, (2)H, and (13)C NMR spectra of enriched CH(3)(13)COOH acid without and in the presence of tetra-n-butylammonium acetate have been measured around 110 K using a liquefied Freon mixture CDF(3)/CDF(2)Cl as a solvent, as a function of the deuterium fraction in the mobile proton sites. For comparison, spectra were also taken of the adduct CH(3)(13)COOH.SbCl(5) 1 and of CH(2)Cl(13)COOH under similar conditions, as well as of CH(3)(13)COOH and CH(3)(13)COO(-) dissolved in H(2)O and D(2)O at low and high pH at 298 K. The low temperatures employed allowed us to detect several well-known and novel hydrogen-bonded complexes in the slow hydrogen bond exchange regime and to determine chemical shifts and coupling constants as well as H/D isotope effects on chemical shifts from the fine structure of the corresponding signals. The measurements show that self-association of both carboxylic acids in Freon solution gives rise exclusively to the formation of cyclic dimers 2 and 3 exhibiting a rapid degenerate double proton transfer. For the first time, a two-bond coupling of the type (2)J(CH(3)COOH) between a hydrogen-bonded proton and the carboxylic carbon has been observed, which is slightly smaller than half of the value observed for 1. In addition, the (1)H and (2)H chemical shifts of the HH, HD, and the DD isotopologues of 2 and 3 have been determined as well as the corresponding HH/HD/DD isotope effects on the (13)C chemical shifts. Similar "primary", "vicinal", and "secondary" isotope effects were observed for the novel 2:1 complex "dihydrogen triacetate" 5 between acetic acid and acetate. Another novel species is the 3:1 complex "trihydrogen tetraacetate" 6, which was also characterized by a complex degenerate combined hydrogen bond- and proton-transfer process. For comparison, the results obtained previously for hydrogen diacetate 4 and hydrogen maleate 7 are discussed. Using an improved (1)H chemical shift-hydrogen bond geometry correlation, the chemical shift data are converted into hydrogen bond geometries. They indicate cooperative hydrogen bonds in the cyclic dimers; i.e., widening of a given hydrogen bond by H/D substitution also widens the other coupled hydrogen bond. By contrast, the hydrogen bonds in 5 are anticooperative. The measurements show that ionization shifts the (13)C signal of the carboxyl group to low field when the group is immersed in water, but to high field when it is embedded in a polar aprotic environment. This finding allows us to understand the unusual ionization shift of aspartate groups in the HIV-pepstatin complex observed by Smith, R.; Brereton, I. M.; Chai, R. Y.; Kent, S. B. H. Nature Struct. Biol. 1996, 3, 946. It is demonstrated that the Freon solvents used in this study are better environments for model studies of amino acid interactions than aqueous or protic environments. Finally, a novel correlation of the hydrogen bond geometries with the H/D isotope effects on the (13)C chemical shifts of carboxylic acid groups is proposed, which allows one to estimate the hydrogen bond geometries and protonation states of these groups. It is shown that absence of such an isotope effect is not only compatible with an isolated carboxylate group but also with the presence of a short and strong hydrogen bond.  相似文献   

8.
Fragment density functional theory (DFT) calculation of NMR chemical shifts for several proteins (Trp-cage, Pin1 WW domain, the third IgG-binding domain of Protein G (GB3) and human ubiquitin) has been carried out. The present study is based on a recently developed automatic fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach but the solvent effects are included by using the PB (Poisson-Boltzmann) model. Our calculated chemical shifts of (1)H and (13)C for these four proteins are in excellent agreement with experimentally measured values and represent clear improvement over that from the gas phase calculation. However, although the inclusion of the solvent effect also improves the computed chemical shifts of (15)N, the results do not agree with experimental values as well as (1)H and (13)C. Our study also demonstrates that AF-QM/MM calculated results accurately reproduce the separation of α-helical and β-sheet chemical shifts for (13)C(α) atoms in proteins, and using the (1)H chemical shift to discriminate the native structure of proteins from decoys is quite remarkable.  相似文献   

9.
醇是一类重要的有机溶剂,对其结构和性质的研究已有很长历史。由于OH的存在,醇分子间存在着较强的氢键缔合作用,使其结构变得复杂,因而较难对它得到一个很清楚的认识。用NMR方法研究氢键也有几十年历史。早在五十年代,Arnold,Becker等就用~1HNMR研究了EtOH在CCl_4中的行为,测量了化学位移随浓度的变化。Becker认为当醇浓度很稀时,体系中只存在单体-二聚体平衡,井结合IR数据求得了平衡常数及缔合物位移。有  相似文献   

10.
1H and 13C NMR spectra of 8-hydroxyquinoline (oxine) and its 5-Me, 5-F, 5-Cl, 5-Br and 5-NO2 derivatives have been studied in DMSO-d6 solution. The 1H and 13C chemical shifts and proton–proton, proton–fluorine, carbon–proton and carbon–fluorine coupling constants have been determined. The 1H and 13C chemical shifts have been correlated with the charge densities on the hydrogen and carbon atoms calculated by the CNDO/2 method. The correlation of the 1H and 13C chemical shifts with the total charge densities on the carbon atoms is approximately linear (rH2 = 0.85, rC2 = 0.84). The proton in peri position to the nitro group in 5-NO2-oxine is an exception.  相似文献   

11.
The complete assignments of all 1H and 13C chemical shifts were made for the fluorinated dehydroepiandrosterone (DHEA) analog fluasterone, 2, and two potential in vivo metabolites 3 and 4. The assignments were made using a combination of one- and two-dimensional NMR techniques (1H, 13C, gDQCOSY, gHSQC, gHMBC). Once the proton chemical shifts were assigned, the stereochemistry of the two hydroxylated analogs was determined using 2D ROESY experiments.  相似文献   

12.
The experimental (1)H, (13)C NMR spectra of 3,3-dimethoxy-1-(imidazolidin-2-ylidene)propan-2-one were recorded in CDCl(3) at temperature range 213-323 K. The variable temperature spectra revealed a dynamic NMR effect which is attributed to restricted rotation around the C=C double bond. Fast exchange processes of deuterium atoms between CDCl(3) and 3,3-dimethoxy-1-(imidazolidin-2-ylidene)propan-2-one or fast exchange of proton between nitrogen and oxygen atoms of carbonyl group is also revealed by broadening of N-H (singlet) proton NMR signals. Proton and carbon theoretical chemical shifts of the title molecule were calculated by using RHF and MP2-GIAO levels and different basis sets in gas phase at 298 K. The calculated proton chemical shifts show that the experimental values have no agreement with theoretical values, but for carbon chemical shifts a good agreement achieved by using RHF with 6-31G basis set and MP2/3-21G, 6-31G basis sets. Discrepancies are attributed to either the limitations of calculating program, because the change of the structure while rotation are not considered. The results showed that to select of basis set has more important rule, because RHF-GIAO level calculation with 6-31G basis set in gas phase can excellently reproduce the (13)C NMR spectrum. Moreover, MP2/3-21G, 6-31G calculation has not significant influence on (13)C NMR chemical shifts with respect to RHF-6-31G.  相似文献   

13.
14.
Prediction of chemical shifts in organic cations is known to be a challenge. In this article we meet this challenge for α-protonated alkylpyrroles, a class of compounds not yet studied in this context, and present a combined experimental and theoretical study of the 13C and 1H chemical shifts in three selected pyrroles. We have investigated the importance of the solvation model, basis set, and quantum chemical method with the goal of developing a simple computational protocol, which allows prediction of 13C and 1H chemical shifts with sufficient accuracy for identifying such compounds in mixtures. We find that density functional theory with the B3LYP functional is not sufficient for reproducing all 13C chemical shifts, whereas already the simplest correlated wave function model, Møller–Plesset perturbation theory (MP2), leads to almost perfect agreement with the experimental data. Treatment of solvent effects generally improves the agreement with experiment to some extent and can in most cases be accomplished by a simple polarizable continuum model. The only exception is the NH proton, which requires inclusion of explicit solvent molecules in the calculation.  相似文献   

15.
Well-resolved and unambiguous through-bond correlations and NOE data are crucial for high-quality protein structure determination by NMR. In this context, we present here (4, 3)D reduced dimensionality (RD) experiments: H(CC)CONH TOCSY and NOESY HNCO--which instead of (15)N shifts exploit the linear combination of (15)N(i) and (13)C'(i-1) shifts (where i is a residue number) to resolve the through-bond (1)H-(1)H correlations and through-space (1)H-(1)H NOEs. The strategy makes use of the fact that (15)N and (13)C' chemical shifts when combined linearly provide a dispersion which is better compared to those of the individual chemical shifts. The extended dispersion thus available in these experiments will help to obtain the unambiguous side chain and accurate NOE assignments especially for medium-sized alpha-helical or partially unstructured proteins [molecular weight (MW) between 12-15 kDa] as well as higher MW (between 15-25 kDa) folded proteins where spectral overlap renders inaccurate and ambiguous NOEs. Further, these reduced dimensionality experiments in combination with routinely used (15)N and (13)C' edited TOCSY and NOESY experiments will provide an alternative way for high-quality NMR structure determination of large unstable proteins (with very high shift degeneracy), which are not at all amenable to 4D NMR. The utility of these experiments has been demonstrated here using (13)C/(15)N labeled ubiquitin (76 aa) protein.  相似文献   

16.
The hydrofullerenes C(60)H(2) (1) and C(60)H(6) (2) have been prepared in (13)C-enriched form and 2D INADEQUATE NMR spectra were measured. These spectra have provided unambiguous (13)C assignments for 2, and nearly unambiguous assignments for 1. In both cases, the most downfield resonances are immediately adjacent to the sp(3) carbons, despite the fact that these carbons are the least pyramidalized carbons in the molecule. Typically, (13)C chemical shifts move downfield with increasing pyramidalization (THETA(p)), but in these systems there is no strong correlation between THETA(p) and delta. HF-GIAO calculations are able to predict the chemical shifts, but provide little chemical insight into the origin of these chemical shifts. London theory reveals a significant paramagnetic ring current in 1, a feature that helps explain the (1)H shifts in these compounds and may contribute to the (13)C chemical shifts as well.  相似文献   

17.
Proton and carbon magnetic resonance spectra of mono-and disubstituted selenophenes are investigated. The proton chemical shifts are discussed in terms of magnetic anisotropy and electric field effects of the substituents, with a view to studying the conformational equilibrium of the carbonyl group. π Electronic charges, computed by the PPP method, are correlated with the proton and carbon chemical shifts. The coupling constants between 13C and 1H (1, 2 or 3 bonds) and 13C? 77Se are shown to be good structural parameters and a set of substituent additivity constants is calculated.  相似文献   

18.
A method for structure validation based on the simultaneous analysis of a 1D (1)H NMR and 2D (1)H - (13)C single-bond correlation spectrum such as HSQC or HMQC is presented here. When compared with the validation of a structure by a 1D (1)H NMR spectrum alone, the advantage of including a 2D HSQC spectrum in structure validation is that it adds not only the information of (13)C shifts, but also which proton shifts they are directly coupled to, and an indication of which methylene protons are diastereotopic. The lack of corresponding peaks in the 2D spectrum that appear in the 1D (1)H spectrum, also gives a clear picture of which protons are attached to heteroatoms. For all these benefits, combined NMR verification was expected and found by all metrics to be superior to validation by 1D (1)H NMR alone. Using multiple real-life data sets of chemical structures and the corresponding 1D and 2D data, it was possible to unambiguously identify at least 90% of the correct structures. As part of this test, challenging incorrect structures, mostly regioisomers, were also matched with each spectrum set. For these incorrect structures, the false positive rate was observed as low as 6%.  相似文献   

19.
Data on 13C chemical shifts and 13C? 1H spin coupling constants of norbornane ( 1 ), norbornene ( 2 ), norbornadiene ( 3 ), benzonorbornene ( 4 ) and benzonorbornadiene ( 6 ) are reported. The non-equivalence in J(13C? H) values determined from the two bridge methylene proton signals in 2,2,3,3-tetradeuteriobenzonorbornene ( 5 ) and 6 is briefly discussed. The extraordinary deshielding of the bridge methylene carbon in 6 has been noted.  相似文献   

20.
By means of the (1)H chemical shifts and the proton-proton proximities as identified in (1)H double-quantum (DQ) combined rotation and multiple-pulse spectroscopy (CRAMPS) solid-state NMR correlation spectra, ribbon-like and quartet-like self-assembly can be identified for guanosine derivatives without isotopic labeling for which it was not possible to obtain single crystals suitable for diffraction. Specifically, characteristic spectral fingerprints are observed for dG(C10)(2) and dG(C3)(2) derivatives, for which quartet-like and ribbon-like self-assembly has been unambiguously identified by (15)N refocused INADEQUATE spectra in a previous study of (15)N-labeled derivatives (Pham, T. N.; et al. J. Am. Chem. Soc.2005, 127, 16018). The NH (1)H chemical shift is observed to be higher (13-15 ppm) for ribbon-like self-assembly as compared to 10-11 ppm for a quartet-like arrangement, corresponding to a change from NH···N to NH···O intermolecular hydrogen bonding. The order of the two NH(2)(1)H chemical shifts is also inverted, with the NH(2) proton closest in space to the NH proton having a higher or lower (1)H chemical shift than that of the other NH(2) proton for ribbon-like as opposed to quartet-like self-assembly. For the dG(C3)(2) derivative for which a single-crystal diffraction structure is available, the distinct resonances and DQ peaks are assigned by means of gauge-including projector-augmented wave (GIPAW) chemical shift calculations. In addition, (14)N-(1)H correlation spectra obtained at 850 MHz under fast (60 kHz) magic-angle spinning (MAS) confirm the assignment of the NH and NH(2) chemical shifts for the dG(C3)(2) derivative and allow longer range through-space N···H proximities to be identified, notably to the N7 nitrogens on the opposite hydrogen-bonding face.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号