首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of surfactants' type and concentration on the interfacial tension and contact angle in the presence of hydrophilic silica particles was investigated. Silica particles have been shown to have an antagonistic effect on interfacial tension and contact angle in the presence of both W/O and O/W surfactants. Silica particles, combined with W/O surfactant, have no effect on interfacial tension, which is only dictated by the surfactant concentration, while they strongly affect interfacial tension when combined with O/W surfactants. At low O/W surfactant, both particles and surfactant are adsorbed at the interface, modifying the interface structure. At higher concentration, interfacial tension is only dictated by the surfactant. By increasing the surfactant concentration, the contact angle that a drop of aqueous phase assumes on a glass substrate placed in oil media decreases or increases depending on whether the surfactant is of W/O or O/W type, respectively. This is due to the modification of the wettability of the glass by the oil or water induced by the surfactants. Regardless of the surfactant's type, the contact angle profile was dictated by both particles and surfactant at low surfactant concentration, whereas it is dictated by the surfactant only at high concentration.  相似文献   

2.
Single-particle tracking with real-time feedback control can be used to study three-dimensional nanoparticle transport dynamics. We apply the method to study the behavior of adsorbed nanoparticles at a silicone oil-water interface in a microemulsion system over a range of particles sizes from 24 nm to 2000 nm. The diffusion coefficient of large particles (>200 nm) scales inversely with particle size, while smaller particles exhibit an unexpected increase in drag force at the interface. The technique can be applied in the future to study three-dimensional dynamics in a range of systems, including complex fluids, gels, biological cells, and geological media.  相似文献   

3.
4.
A change of oil/water interfacial tension in the presence of cationic or anionic surfactants in an organic phase was observed due to the addition of charged fine solids in the aqueous phase. The charged fine solids in the aqueous phase adsorb surfactants diffused from the oil phase, thereby causing an increase in the bulk equilibrium surfactant concentration in the aqueous phase, governed by the Stern-Grahame equation. Consequently, surfactant adsorption at the oil-water interface increases, which was demonstrated from the measured reduction of the oil-water interfacial tension. The increased surfactant partition in the aqueous phase in the presence of the charged particles was confirmed by the measured decrease in the surface tension for the collected aqueous solution after solids removal, as compared with the cases without solids addition.  相似文献   

5.
While nanoparticle adsorption to fluid interfaces has been studied from a fundamental standpoint and exploited in application, the reverse process, that is, desorption and disassembly, remains relatively unexplored. Here we demonstrate the forced desorption of gold nanoparticles capped with amphiphilic ligands from an oil-water interface. A monolayer of nanoparticles is allowed to spontaneously form by adsorption from an aqueous suspension onto a drop of oil and is subsequently compressed by decreasing the drop volume. The surface pressure is monitored by pendant drop tensiometry throughout the process. Upon compression, the nanoparticles are mechanically forced out of the interface into the aqueous phase. An optical method is developed to measure the nanoparticle area density in situ. We show that desorption occurs at a coverage that corresponds to close packing of the ligand-capped particles, suggesting that ligand-induced repulsion plays a crucial role in this process.  相似文献   

6.
The distribution of proteins and lipids in food emulsions and foams is determined by competitive and cooperative adsorption between the two types of emulsifiers at the fluid-fluid interfaces, and by the nature of protein-lipid interactions, both at the interface and in the bulk phase. The existence of protein-lipid interactions can have a pronounced impact on the surface rheological properties of these systems. Therefore, these results are of practical importance for food emulsion formulation, texture, and stability. In this study, the existence of protein-lipid interactions at the interface was determined by surface dynamic properties (interfacial tension and surface dilational modulus). Systematic experimental data on surface dynamic properties, as a function of time and at long-term adsorption, for protein (whey protein isolate (WPI)), lipids (monoglycerides), and protein-lipid mixed films at the oil-water interface were measured in an automated drop tensiometer. The dynamic behaviour of protein+lipid mixed films depends on the adsorption time, the lipid and the protein/lipid ratio in a rather complicated manner. The protein determined the interfacial characteristics of the mixed film as the protein at WPI>/=10(-2)% wt/wt saturated the film, no matter what the concentration of the lipid. However, there exists a competitive or cooperative adsorption of the emulsifier (WPI and monoglycerides), as the concentration of protein in the bulk phase is far lower than that for interfacial saturation.  相似文献   

7.
Let's get charged! Positively charged nanoparticles (NPs) spontaneously self-assemble into hexagonally close-packed lattices at a planar CH(2)Cl(2)-water interface. The self-assembly process is fully autonomous and occurs without any external manipulation.  相似文献   

8.
This paper demonstrates the use of polyelectrolytes to modify and manipulate the adsorption of ionic surfactants onto the hydrophilic surface of silica. We have demonstrated that the cationic polyelectrolyte poly(dimethyl diallylammonium chloride), poly-dmdaac, modifies the adsorption of cationic and anionic surfactants to the hydrophilic surface of silica. A thin robust polymer layer is adsorbed from a dilute polymer/surfactant solution. The resulting surface layer is cationic and changes the relative affinity of the cationic surfactant hexadecyl trimethylammonium bromide, C16TAB, and the anionic surfactant sodium dodecyl sulfate, SDS, to adsorb. The adsorption of C16TAB is dramatically reduced. In contrast, strong adsorption of SDS was observed, in situations where SDS would normally have a low affinity for the surface of silica. We have further shown that subsequent adsorption of the anionic polyelectrolyte sodium poly(styrene sulfonate), Na-PSS, onto the poly-dmdaac coated surface results in a change back to an anionic surface and a further change in the relative affinities of the cationic and anionic surfactants for the surface. The relative amounts of C16TAB and SDS adsorption depend on the coverage of the polyelectrolyte, and these preliminary measurements show that this can be manipulated.  相似文献   

9.
The properties of 3 nm-diameter silica nanoparticles with different surface chemistry were systematically investigated at the decane-water interface using molecular dynamics simulations. Our results show that the decane-water interfacial tension is not much influenced by the presence of the nanoparticles. The three-phase contact angle increases with nanoparticle surface hydrophobicity. Contact angles observed for the nanoparticles at 300 and at 350 K differ very little. The contact angle of the nanoparticle with randomly dispersed hydrophobic groups is smaller than that observed in Janus nanoparticles of equal overall surface chemistry composition. The energy necessary to desorb Janus nanoparticles from the interface is usually higher than that required to desorb the corresponding homogeneous nanoparticles. Desorption from the interface into the aqueous phase is preferred over that into the organic phase for all except one of the nanoparticles considered. Structural and dynamic properties including nanoparticle rotational relaxation, solvent density profiles, and solvent residence autocorrelation functions near the nanoparticles are also presented. The data are useful for designing Pickering emulsions.  相似文献   

10.
This short review is devoted to recent achievements in studies of the dilational surface rheological properties of the systems containing complexes of silica nanoparticles with conventional surfactants. It is shown that there is a surfactant concentration range where the dynamic surface elasticity reaches extremely high values up to 1000 mN/m. This result can explain the formation of very stable foams and emulsions containing nanoparticles. In some surfactant concentration ranges the adsorption layer is characterized by a non-linear response to small compressions or expansions of the liquid surface. Possible causes of this behavior and the mechanism of main relaxation processes are briefly discussed.  相似文献   

11.
A variety of experimental approaches has been used for companson of the stabilizing effect with respect to droplets coalescence caused by the interfacial adsorption layers (IAL) of a nunber of hydrocarbon and fluorocarbon surfactants at the boundary between their aqueous solutions and various non-polar hydrocarbon and fluorocarbon liquids: (I) compression of two individual droplets in surfactant solution up to their coalescence and consequent tension and rupture of a newly formed drop; (II) evaluation of the free energy of interaction between non-polar surfaces by measuring the contact rupture force for smooth spherical particles; (III) rheological study of IAL by torque pendulum method; (IV) SEM observation of the IAL morphology; (V) study of the stability with respect to the Ostwald ripening. These observations reveal the predominant role of the lyophilic structure-mechanical barrier formed by the IAL as a factor of strong stabilization with respect to coalescence and particular dependence of the mechanical strength of such layer on the nature of the non-polar liquid and on the interaction between this liquid phase and hydrophobic parts of the surfactant molecules.  相似文献   

12.
A biconical bob interfacial shear rheometer was used to study the mechanical properties of asphaltenic films adsorbed at the oil-water interface. Solutions of asphaltenes isolated from four crude oils were dissolved in a model oil of heptane and toluene and allowed to adsorb and age in contact with water. Film elasticity (G') values were measured over a period of several days, and yield stresses and film masses were determined at the end of testing. The degree of film consolidation was determined from ratios of G'/film mass and yield stress/G'. Asphaltenes with higher concentrations of heavy metals (Ni, 330-360 ppm; V, 950-1000 ppm), lower aromaticity (H/C, 1.24-1.29), and higher polarity (N, 1.87-1.99) formed films of high elasticity, yield stress, and consolidation. Rapid adsorption kinetics and G' increases were seen when asphaltenes were near their solubility limit in heptane-toluene mixtures (approximately 50% (v/v) toluene). In solvents of greater aromaticity, adsorption kinetics and film masses were reduced at comparable aging times. Poor film forming asphaltenes had yield stress/G' values ((1.01-1.21) x 10(-2)) more than 4-fold lower than those of good film forming asphaltenes. n-heptane asphaltenes fractionated by filtering solutions prepared at low aromaticity (approximately 40% toluene in mixtures of heptane and toluene) possessed higher concentrations of heavy metals and nitrogen and higher aromaticity. The less soluble fractions of good film forming asphaltenes exhibited enhanced adsorption kinetics and higher G' and yield stress values in pure toluene. Replacing the asphaltene solutions with neat heptane-toluene highlighted the ability of films to consolidate and become more elastic over several hours. Adding resins in solution to a partially consolidated film caused a rapid reduction in elasticity followed by gradual but modest consolidation. This study is among the first to directly relate asphaltene chemistry to adsorption kinetics, adsorbed film mechanical properties, and consolidation kinetics.  相似文献   

13.
Hydrophobins are small, amphiphilic proteins expressed by strains of filamentous fungi. They fulfill a number of biological functions, often related to adsorption at hydrophobic interfaces, and have been investigated for a number of applications in materials science and biotechnology. In order to understand the biological function and applications of these proteins, a microscopic picture of the adsorption of these proteins at interfaces is needed. Using molecular dynamics simulations with a chemically detailed coarse-grained potential, the behavior of typical hydrophobins at the water-octane interface is studied. Calculation of the interfacial adsorption strengths indicates that the adsorption is essentially irreversible, with adsorption strengths of the order of 100 k(B)T (comparable to values determined for synthetic nanoparticles but significantly larger than small molecule surfactants and biomolecules). The protein structure at the interface is unchanged at the interface, which is consistent with the biological function of these proteins. Comparison of native proteins with pseudoproteins that consist of uniform particles shows that the surface structure of these proteins has a large effect on the interfacial adsorption strengths, as does the flexibility of the protein.  相似文献   

14.
Effects of the anionic surfactants, sodium dodecyl sulfate and sodium oleate, on the formation and properties of silica colloidal nanoparticles were investigated. At a concentration of approximately 1 x 10(-3) M, adsorption of anionic surfactants increased particle size, monodispersity, and negative surface charge density of synthesized silica particles. As uniformity of particle size and particle-particle interactions increase, colloidal photonic crystals readily self-assemble without extensive washing of the synthesized silica nanoparticles. The photonic crystals diffract light in the visible region according to Bragg's law. The assembled colloidal particle arrays exhibit a face-centered cubic structure in dried thin films. This study offers a new approach for producing ordered colloidal silica thin films.  相似文献   

15.
We calculate the optical trapping forces exerted by a single laser beam strongly focused on a dielectric sphere located at a two-dimensional (2D) oil-water interface. The calculated lateral trapping forces, based on the geometrical optics approximation (GOA), agree with experimental measurements of the trapping force. Importantly, the calculations verify that the radiation force exerted on particles perpendicular to the interface is not sufficient to induce capillary interactions between particle pairs, which could be mistaken for particle-particle interactions. Finally, we find that the trapping forces depend on the three-phase contact angle of the particle at the interface.  相似文献   

16.
We describe predictions of properties of copolymer-stabilized nanoparticles in the presence of an oil-water interface based on Brownian dynamics simulations. These simulations provide information regarding the equilibrium and diffusion properties of the stabilized particles. The hydrophilic part of the copolymer is modeled as a polyelectrolyte and is described at the Debye-Hückel level. Both block and random copolymers are considered. The surface area of particles at the fluid interface and the diffusion properties of the particles give some guidance into the copolymer architectures that may be most useful for stabilizing nanoparticles at fluid interfaces. We find based on our results that a conservative recommendation to enhance transportability in a water phase and attachment to an oil-water interface would be to design nanoparticles with a random copolymer attached to them.  相似文献   

17.
The size-dependent interaction of anionic silica nanoparticles with ionic (anionic and cationic) and nonionic surfactants has been studied using small-angle neutron scattering (SANS). The surfactants used are anionic sodium dodecyl sulfate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB), and nonionic decaoxyethylene n-dodecylether (C(12)E(10)). The measurements have been carried out for three different sizes of silica nanoparticles (8, 16, and 26 nm) at fixed concentrations (1 wt % each) of nanoparticles and surfactants. It is found that irrespective of the size of the nanoparticles there is no significant interaction evolved between like-charged nanoparticles and the SDS micelles leading to any structural changes. However, the strong attraction of oppositely charged DTAB micelles with silica nanoparticles results in the aggregation of nanoparticles. The number of micelles mediating the nanoparticle aggregation increases with the size of the nanoparticle. The aggregates are characterized by fractal structure where the fractal dimension is found to be constant (D ≈ 2.3) independent of the size of the nanoparticles and consistent with diffusion-limited-aggregation-type fractal morphology in these systems. In the case of nonionic surfactant C(12)E(10), micelles interact with the individual silica nanoparticles. The number of adsorbed micelles per nanoparticle increases drastically whereas the percentage of adsorbed micelles on nanoparticles decreases with the increase in the size of the nanoparticles.  相似文献   

18.
The self-assembly of hydrophilic silica nanoparticles at the surface of charged submicrometer triglyceride droplets has been investigated with the aim to optimize the preparation of stable colloidosomes. The droplet charge, oil phase volume fraction, droplet/nanoparticle ratio, and salt concentration play important roles in controlling nanoparticle interactions and are reflected in the colloidosome zeta potential, size, stability, and interfacial structure (visualized by freeze-fracture SEM). Silica nanoparticle interactions with negatively charged droplets are weak, and partially covered droplets are identified. Positively charged droplets are strongly coated by silica nanoparticles and undergo charge reversal at specific droplet to nanoparticle ratios and electrolyte concentrations. Droplets at volume fractions (varphi) <10 (-4) undergo time-dependent limited coalescence until nanoparticle coverage is complete. For varphi in the range 10 (-4) to 2.5 x 10 (-4) and at certain critical droplet to nanoparticle ratios, droplets undergo neutralization or charge reversal coupled with aggregation and precipitation; this occurs in a time-independent manner. Specific conditions have been identified where stable 1-3 mum colloidosomes can be phase separated from heterocoagulates of droplets and nanoparticles.  相似文献   

19.
20.
It is well-known that the amphiphilic solutes are surface-active and can accumulate at the oil-water interface. Here, we have investigated the water and a light-oil model interface by using molecular dynamic simulations. It was found that aromatics concentrated in the interfacial region, whereas the other hydrocarbons were uniformly distributed throughout the oil phase. Similar to previous studies, such concentrations were not observed at pure aromatics-water interfaces. We show that the self-accumulation of aromatics at the oil-water interface is driven by differences in the interfacial tension, which is lower for aromatics-water than between the others. The weak hydrogen bonding between the aromatic rings and the water protons provides the mechanism for lowering the interfacial tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号