首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-stacked Co(3)O(4) nanosheets separated by carbon layers were synthesized via a facile method. They exhibit excellent electrochemical performance that results from superior electronic conductivity endowed by carbon, a reduced Li(+) diffusion length within the building blocks and a large electrode/electrolyte contact area due to the interspaces between the blocks.  相似文献   

2.
Through a solution approach, SnSe(2) nanoplate-graphene composites were prepared and applied as anode materials in lithium ion batteries, showing promising storage performance superior to SnSe(2) nanoplates or graphene alone.  相似文献   

3.
Polyaniline encapsulated silicon (Si/PANI) nanocomposite as anode materials for high-capacity lithium ion batteries has been prepared by an in situ chemical polymerization of aniline monomer in the suspension of Si nanoparticles. The obtained Si/PANI nanocomposite demonstrates a reversible specific capacity of 840 mAh g?1 after 100 cycles at a rate of 100 mA g?1 and excellent cycling stability. The enhanced electrochemical performance can be due to that the polyaniline (PANI) matrix offers a continuous electrically conductive network as well as enhances the compatibility of electrode materials and electrolyte as a result of suppressing volume stress of Si during cycles and preventing the agglomeration of Si nanoparticles.  相似文献   

4.
The Si–AB5 (MmNi3.6Co0.7Al0.3Mn0.4 alloy) composites with a high tap density as anode materials for lithium-ion batteries were synthesized by ball-milling. Si nanoparticles are distributed homogeneously on the surface of the AB5 matrix. The electrochemical performance of the Si–AB5 composites as a function of Si content was investigated. It is demonstrated that the Si–AB5 composite delivers a larger reversible capacity and better cycle ability because the inactive AB5 alloy can accommodate the large volume changes of Si nanoparticles distributed on the surface of the Si–AB5 composite during cycling. In particular, the Si–AB5 composite containing 20 wt% Si with the high tap density of 2.8 g/cm3 obtained after ball-milling for 11 h exhibits an initial and maximum reversible (charge) capacity of 370 and 385 mAh/g. The high capacity retention can be achieved after 50 cycles in the potential range from 0.02 to 1.5 V.  相似文献   

5.
Journal of Solid State Electrochemistry - The morphology of Co-based zeolitic imidazolate framework is affected by the molar ratio of 2-methylimidazole and Co2+ used during the synthesis. In this...  相似文献   

6.
Hollow microspheres composed of phase-pure ZnFe2O4 nanoparticles (hierarchically structured) have been prepared by hydrothermal reaction. The unique hollow spherical structure significantly increases the specific capacity and improves capacity retention of this material. The product of each phase transition during initial discharge (ZnFe2O4 ? Li0.5ZnFe2O4 ? Li2ZnFe2O4  Li2O + Li–Zn + Fe) and their structural reversibility are recognized by X-ray diffraction and electrochemical characterization. The products of the deeply discharged (Li–Zn alloy and Fe) and recharged materials (Fe2O3) were clarified based on high resolution transmission electron microscopic technique and first-principle calculations.  相似文献   

7.
《中国化学快报》2023,34(4):107465
Sodium-ion batteries (SIB) have attracted widespread attention in large-scale energy storage fields owing to the abundant reserve in the earth and similar properties of sodium to lithium. Biomass-based carbon materials with low-cost, controllable structure, simple processing technology, and environmental friendliness tick almost all the right boxes as one of the promising anode materials for SIB. Herein, we present a simple novel strategy involving tea tomenta biomass-derived carbon anode with enhanced interlayer carbon distance (0.44 nm) and high performance, which is constructed by N,P co-doped hard carbon (Tea-1100-NP) derived from tea tomenta. The prepared Tea-1100-NP composite could deliver a high reversible capacity (326.1 mAh/g at 28 mA/g), high initial coulombic efficiency (ICE = 90% at 28 mA/g), stable cycle life (262.4 mAh/g at 280 mA/g for 100 cycles), and superior rate performance (224.5 mAh/g at 1400 mA/g). Experimental results show that the excellent electrochemical performance of Tea-1100-NP due to the high number of active N,P-containing groups, and disordered amorphous structures provide ample active sites and increase the conductivity, meanwhile, large amounts of microporous shorten the Na+ diffusion distance as well as quicken ion transport. This work provides a new type of N,P co-doped high-performance tomenta-derived carbon, which may also greatly promote the commercial application of SIB.  相似文献   

8.
Li  Zhitong  Zhao  Jian  Nie  Jiajin  Yao  Shaowei  Wang  Jing  Feng  Xiaoxin 《Journal of Solid State Electrochemistry》2020,24(5):1133-1142
Journal of Solid State Electrochemistry - In this paper, Co3O4/NiO/C composites were prepared by in situ co-precipitation and heat treatment with Zn/Co-ZIF-derived N-doped porous carbon as carbon...  相似文献   

9.
The structural evolution of the Co3O4 fine powders prepared by rheological phase reaction and pyrolysis method upon different temperature has been investigated using X‐ray diffraction (XRD) topography. The electrochemical performance of Co3O4 electrode materials for Li‐ion batteries is studied in the form of Li/Co3O4 cells. The reversible capacity as high as 930 mAh/g for the Co3O4 sample heat‐treated at 600 °C is achieved and sustained over 30 times charge‐discharge cycles at room temperature. The detailed information concerning the reaction mechanism of Co3O4 active material together with lithium ion is obtained through ex‐situ XRD topography, X‐ray photoelectron spectroscopy (XPS) analysis and cyclic voltammetry (CV) technique. And it is revealed that a “two‐step” reaction is involved in the charge and discharge of the Li/Co3O4 cells, in which Co3O4 active material is reversibly reduced into xCoO(3 ‐ x)CoO and then into metallic Co.  相似文献   

10.
Hierarchical SnO2 with double carbon coating (polypyrrole-derived carbon and reduced graphene oxide in order) composites have been successfully synthesized as anode materials for lithium ion batteries. The composites were characterized and examined by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, cyclic voltammetry, and galvanostatic discharge/charge tests. Such a novel nanostructure can not only provide a high conductivity but also prevent aggregation of SnO2 nanoparticles, leading to the improvement of the cycling performance. Comparing with pure hierarchical SnO2 and polypyrrole-derived carbon-coated hierarchical SnO2, hierarchical SnO2 with double carbon coating composite exhibits higher lithium storage capacities and better cycling performance, 554.8 mAh g?1 after 50 cycles at a current density of 250 mA g?1. In addition, the rate performance of hierarchical SnO2 with double carbon coating composite is also very well. For all the improved performances, this double carbon coating architecture may provide some references for other electrode materials of lithium ion batteries.  相似文献   

11.
Microporous organic network (MON)-Co(3)O(4) composites were obtained via organometallic complexation of cobalt carbonyl with MONs and showed enhanced stability as anode materials due to the buffering effect of MONs.  相似文献   

12.
13.
14.
Three kinds of silicon-containing disordered carbons have been prepared by pyrolysis of polysiloxanes with different amounts of phenyl side groups. X-ray powder diffraction, X-ray photoelectron spectroscopy and electrochemical capacity measurements were performed to study their behaviors. Graphite crystallites, micropores, and silicon species affect their electrochemical performances. All of them present high reversible capacities, >372 mAh/g. Since the graphite crystallites are very small, they contribute very little to reversible capacity. The number of micropores produced by gas emission during the heat-treatment process decides whether they exhibit reversible capacity. Si mainly exists in the form C–Si–O and influences the irreversible capacity. There is no evident capacity fading in the first ten cycles, indicating promising properties for these disordered carbons.  相似文献   

15.
This paper reports the microwave-assisted synthesis of Co3O4 nanomaterials with different morphologies including nanoparticles, rod-like nanoclusters and macroporous platelets. The new macroporous platelet-like Co3O4 morphology was found to be the best suitable for reversible lithium storage properties. It displayed superior cycling performances than nanoparticles and rod-like nanoclusters. More interestingly, excellent high rate capabilities (811 mAh g?1 at 1780 mA g?1 and 746 mAh g?1 at 4450 mA g?1) were observed for macroporous Co3O4 platelet. The good electrochemical performance could be attributed to the unique macroporous platelet structure of Co3O4 materials.  相似文献   

16.
采用基于密度泛函理论的第一性原理平面波赝势方法计算了不同Al含量的固溶体Sn-Al合金的总能量与电子结构,得到Sn0.7Al0.3合金比例最适合用于锂离子电池Sn基合金材料,并对Sn0.7Al0.3合金嵌锂后的各种物理性质和电化学性质进行了理论计算,发现该固溶体合金相具有较稳定的电化学嵌锂电位和良好的充放电循环性能.同时采用磁控溅射制备了该合金薄膜材料,测试结果与理论计算具有较好的一致性.  相似文献   

17.
ZnFe(2)O(4)/C hollow spheres have been synthesized via a facile solvothermal route using low cost raw materials. The resulting composite showed a very high specific capacity of 841 mAh g(-1) after 30 cycles and good rate capability.  相似文献   

18.
Fe3O4–graphene composites with three‐dimensional laminated structures have been synthesised by a simple in situ hydrothermal method. From field‐emission and transmission electron microscopy results, the Fe3O4 nanoparticles, around 3–15 nm in size, are highly encapsulated in a graphene nanosheet matrix. The reversible Li‐cycling properties of Fe3O4–graphene have been evaluated by galvanostatic discharge–charge cycling, cyclic voltammetry and impedance spectroscopy. Results show that the Fe3O4–graphene nanocomposite with a graphene content of 38.0 wt % exhibits a stable capacity of about 650 mAh g?1 with no noticeable fading for up to 100 cycles in the voltage range of 0.0–3.0 V. The superior performance of Fe3O4–graphene is clearly established by comparison of the results with those from bare Fe3O4. The graphene nanosheets in the composite materials could act not only as lithium storage active materials, but also as an electronically conductive matrix to improve the electrochemical performance of Fe3O4.  相似文献   

19.
刘超群  乔秀丽  迟彩霞 《化学通报》2022,85(11):1290-1296
Fe2O3锂离子电池负极材料因其具有的高能量密度而备受关注。但Fe2O3电极材料存在的如低导电性、充/放电过程中体积改变导致的循环稳定性差等问题限制其实际应用。介绍了高比表面积、结构稳定以及储锂动力学等因素对锂离子电池负极材料电化学性能的重要影响,综述电极活性材料纳米化、形貌控制和杂原子掺杂对Fe2O3负极材料电化学性能改善的相关研究进展,最后对Fe2O3电极材料的发展前景进行了展望。  相似文献   

20.
Anatase TiO2 nanoribbons/nanotubes (TiO2-NRTs) have been synthesised successfully via a reflux method followed by drying in a vacuum oven, and then, silver-coated TiO2 NRTs (Ag/TiO2-NRTs) were prepared by coating silver particles onto the TiO2-NRTs surface by the traditional silver mirror reaction. The physical properties of the synthesised products were examined in detail using X-ray diffraction, field emission gun scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy, respectively. The results indicated that the Ag nanoparticles were uniformly deposited on the surface of the TiO2 nanoribbons/nanotubes. The electrochemical properties were investigated by a variety of techniques. The rate capability and cycle durability for the Ag/TiO2-NRTs were improved compared with TiO2-NRTs. It is speculated that the Ag-coated TiO2 nanoribbons/nanotubes are an effective anode candidate for lithium ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号