首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Convergence is established for themulti-sweep asynchronous parallel successive overrelaxation (SOR) algorithm for thenonsymmetric linear complementarity problem. The algorithm was originally introduced in [4] for the symmetric linear complementarity problem. Computational tests show the superiority of the multi-sweep asynchronous SOR algorithm over its single-sweep counterpart on both symmetric and nonsymmetric linear complementarity problems.This material is based on research supported by National Science Foundation Grants CCR-8723091 and DCR-8521228, and Air Force Office of Scientific Research Grants AFOSR-86-0172 and AFOSR-86-0124.  相似文献   

2.
We consider a dual exact penalty formulation for the monotone linear complementarity problem. Tihonov regularization is then used to reduce the solution of the problem to the solution of a sequence of positive-definite, symmetric quadratic programs. A modified form of an SOR method due to Mangasarian is proposed to solve these quadratic programs. We also indicate how to obtain approximate solutions to predefined tolerance by solving a single quadratic program, in special cases.This research was sponsored by US Army Contract DAAG29-80-C-0041, by National Science Foundation Grants DCR-8420963 and MCS-8102684, and AFSOR Grant AFSOR-ISSA-85-0880.  相似文献   

3.
Convergence is established for asynchronous parallel successive overrelaxation (SOR) algorithms for the symmetric linear complementarity problem. For the case of a strictly diagonally dominant matrix convergence is achieved for a relaxation factor interval of (0, 2] with line search, and (0, 1] without line search. Computational tests on the Sequent Symmetry S81 multiprocessor give speedup efficiency in the 43%–91% range for the cases for which convergence is established. The tests also show superiority of the asynchronous SOR algorithms over their synchronous counterparts.This material is based on research supported by National Science Foundation Grants DCR-8420963 and DCR-8521228 and Air Force Office of Scientific Research Grant AFOSR-86-0172.  相似文献   

4.
We give a bound on the distance between an arbitrary point and the solution set of a monotone linear complementarity problem in terms of a condition constant that depends on the problem data only and a residual function of the violations of the complementary problem conditions by the point considered. When the point satisfies the linear inequalities of the complementarity problem, the residual consists of the complementarity condition plus its square root. This latter term is essential and without it the error bound cannot hold. We also show that another natural residual that has been employed to bound errors for strictly monotone linear complementarity problems fails to bound errors for the monotone case considered here. Sponsored by the United States Army under contract No. DAAG29-80-C-0041. This material is based on research sponsored by National Foundation Grant DCR-8420963 and Air Force Office of Scientific Research Grant AFOSR-ISSA-85-00080.  相似文献   

5.
In an earlier paper, the author has given some necessary and sufficient conditions for the convergence of iterative methods for solving the linear complementarity problem. These conditions may be viewed as global in the sense that they apply to the methods regardless of the constant vector in the linear complementarity problem. More precisely, the conditions characterize a certain class of matrices for which the iterative methods will converge, in a certain sense, to a solution of the linear complementarity problem for all constant vectors. In this paper, we improve on our previous results and establish necessary and sufficient conditions for the convergence of iterative methods for solving each individual linear complementarity problem with a fixed constant vector. Unlike the earlier paper, our present analysis applies only to the symmetric linear complementarity problem. Various applications to a strictly convex quadratic program are also given.The author gratefully acknowledges several stimulating conversations with Professor O. Mangasarian on the subject of this paper. He is also grateful to a referee, who has suggested Lemma 2.2 and the present (stronger) version of Theorem 2.1 as well as several other constructive comments.This research was based on work supported by the National Science Foundation under Grant No. ECS-81-14571, sponsored by the United States Army under Contract No. DAAG29-80-C-0041, and was completed while the author was visiting the Mathematics Research Center at the University of Wisconsin, Madison, Wisconsin.  相似文献   

6.
In this note, we discuss some properties of a quadratic formulation for linear complementarity problems. Projected SOR methods proposed by Mangasarian apply to symmetric matrices only. The quadratic formulation discussed here makes it possible to use these SOR methods for solving nonsymmetric LCPs. SOR schemes based on this formulation preserve sparsity. For proper choice of a free parameter, this quadratic formulation also preserves convexity. The value of the quadratic function for the solution of original LCP is also known.  相似文献   

7.
A gradient projection successive overrelaxation (GP-SOR) algorithm is proposed for the solution of symmetric linear complementary problems and linear programs. A key distinguishing feature of this algorithm is that when appropriately parallelized, the relaxation factor interval (0, 2) isnot reduced. In a previously proposed parallel SOR scheme, the substantially reduced relaxation interval mandated by the coupling terms of the problem often led to slow convergence. The proposed parallel algorithm solves a general linear program by finding its least 2-norm solution. Efficiency of the algorithm is in the 50 to 100 percent range as demonstrated by computational results on the CRYSTAL token-ring multicomputer and the Sequent Balance 21000 multiprocessor.This material is based on research supported by National Science Foundation Grants DCR-8420963 and DCR-8521228 and Air Force Office of Scientific Research Grants AFOSR-86-0172 and AFOSR-86-0255.  相似文献   

8.
A unified treatment is given for partially and totally asynchronous parallel successive overrelaxation (SOR) algorithms for the linear complementarity problem. Convergence conditions are established and compared to previous results. Convergence of the partially asynchronous method for the symmetric linear complementarity problem can be guaranteed if the relaxation factor is sufficiently small. Unlike previous results, this relaxation factor interval does not depend explicitly on problem size.This material is based on research supported by the Air Force Office of Scientific Research Grant No. AFOSR-89-0410.The author wishes to thank the referee for pointing out how to improve the bound (12). The same technique can be used to reduce the factorn in Ref. 5, p. 553, to .  相似文献   

9.
A sparsity preserving LP-based SOR method for solving classes of linear complementarity problems including the case where the given matrix is positive-semidefinite is proposed. The LP subproblems need be solved only approximately by a SOR method. Heuristic enhancement is discussed. Numerical results for a special class of problems are presented, which show that the heuristic enhancement is very effective and the resulting program can solve problems of more than 100 variables in a few seconds even on a personal computer.This research was sponsored by the Air Force Office of Scientific Research, Grant No. AFOSR-86-0124. Part of this material is based on work supported by the National Science Foundation under Grant No. MCS-82-00632.The author is grateful to Dr. R. De Leone for his helpful and constructive comments on this paper.  相似文献   

10.
We propose a two-stage successive overrelaxation method (TSOR) algorithm for solving the symmetric linear complementarity problem. After the first SOR preprocessing stage this algorithm concentrates on updating a certain prescribed subset of variables which is determined by exploiting the complementarity property. We demonstrate that this algorithm successfully solves problems with up to ten thousand variables.This material is based on research supported by National Science Foundation Grants DCR-8420963 and DCR-8521228 and Air Force Office of Scientific Research Grants AFSOR-86-0172 and AFSOR-86-0255 while the author was at the Computer Sciences Department at the University of Wisconsin-Madison, USA.  相似文献   

11.
LetK be the class ofn × n matricesM such that for everyn-vectorq for which the linear complementarity problem (q, M) is feasible, then the problem (q, M) has a solution. Recently, a characterization ofK has been obtained by Mangasarian [5] in his study of solving linear complementarity problems as linear programs. This note proves a result which improves on such a characterization.Research sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the National Science Foundation under Grant No. MCS75-17385.  相似文献   

12.
The affine second-order cone complementarity problem (SOCCP) is a wide class of problems that contains the linear complementarity problem (LCP) as a special case. The purpose of this paper is to propose an iterative method for the symmetric affine SOCCP that is based on the idea of matrix splitting. Matrix-splitting methods have originally been developed for the solution of the system of linear equations and have subsequently been extended to the LCP and the affine variational inequality problem. In this paper, we first give conditions under which the matrix-splitting method converges to a solution of the affine SOCCP. We then present, as a particular realization of the matrix-splitting method, the block successive overrelaxation (SOR) method for the affine SOCCP involving a positive definite matrix, and propose an efficient method for solving subproblems. Finally, we report some numerical results with the proposed algorithm, where promising results are obtained especially for problems with sparse matrices.  相似文献   

13.
A unified treatment is given for iterative algorithms for the solution of the symmetric linear complementarity problem: $$Mx + q \geqslant 0, x \geqslant 0, x^T (Mx + q) = 0$$ , whereM is a givenn×n symmetric real matrix andq is a givenn×1 vector. A general algorithm is proposed in which relaxation may be performed both before and after projection on the nonnegative orthant. The algorithm includes, as special cases, extensions of the Jacobi, Gauss-Seidel, and nonsymmetric and symmetric successive over-relaxation methods for solving the symmetric linear complementarity problem. It is shown first that any accumulation point of the iterates generated by the general algorithm solves the linear complementarity problem. It is then shown that a class of matrices, for which the existence of an accumulation point that solves the linear complementarity problem is guaranteed, includes symmetric copositive plus matrices which satisfy a qualification of the type: $$Mx + q > 0 for some x in R^n $$ . Also included are symmetric positive-semidefinite matrices satisfying this qualification, symmetric, strictly copositive matrices, and symmetric positive matrices. Furthermore, whenM is symmetric, copositive plus, and has nonzero principal subdeterminants, it is shown that the entire sequence of iterates converges to a solution of the linear complementarity problem.  相似文献   

14.
In this paper, we propose a two-stage parallel iterative method for solving the symmetric linear complementarity problem. When implemented in a parallel computing environment, the method decomposes the problem into subproblems which are solved by certain iterative procedures concurrently on separate processors. Convergence of the overall method is established under some mild assumptions on how the inner iterations are terminated. Applications of the proposed method to solve strictly convex quadratic programs are discused and numerical results on both a sequential computer (IBM 4381) and a super-computer (CRAYX-MP/24) are reported.This research was based on work supported by the National Science Foundation under grant ECS-8407240 and by a 1986 University Research and Development grant from Cray Research Inc.  相似文献   

15.
对称双正型线性互补问题的多重网格迭代解收敛性理论   总被引:4,自引:0,他引:4  
多重网格法是七十年代产生并获得迅速发展的快速送代法.八十年代初,此方法开始应用于变分不等式的求解,其中包括一类互补问题,近十年来大量的数值实验证实,算法是成功的,而算法的收敛性理论也正在逐步建立,当A正定对称时的多重网格收敛性可见[3]和[7];[4]讨论了A半正定时的情况·本文考虑A为更广的一类矩阵:对称双正阵(见定义1.1),建立互补问题:  相似文献   

16.
Shao  Xin-Hui  Wang  Zhe  Shen  Hai-Long 《Numerical Algorithms》2022,91(3):1165-1181
Numerical Algorithms - For the horizontal linear complementarity problem, we establish a linear method based on the sign patterns of the solution of the equivalent modulus equation under the...  相似文献   

17.
We describe an algorithm for the monotone linear complementarity problem (LCP) that converges from any positive, not necessarily feasible, starting point and exhibits polynomial complexity if some additional assumptions are made on the starting point. If the problem has a strictly complementarity solution, the method converges subquadratically. We show that the algorithm and its convergence properties extend readily to the mixed monotone linear complementarity problem and, hence, to all the usual formulations of the linear programming and convex quadratic programming problems.This research was supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.  相似文献   

18.
By perturbing properly a linear program to a separable quadratic program, it is possible to solve the latter in its dual variable space by iterative techniques such as sparsity-preserving SOR (successive overrelaxation) algorithms. The main result of this paper gives an effective computational criterion to check whether the solutions of the perturbed quadratic programs provide the least-norm solution of the original linear program.This research was sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based upon work supported by the National Science Foundation, Grant Nos. DCR-84-20963 and DMS-82-109050, and by the Italian National Research Council (CNR).The author wishes to thank Professor O. L. Mangasarian for his helpful comments which helped to improve the paper.  相似文献   

19.
A fast iterative method for the solution of large, sparse, symmetric, positive definite linear complementarity problems is presented. The iterations reduce to linear iterations in a neighborhood of the solution if the problem is nondegenerate. The variational setting of the method guarantees global convergence.As an application, we consider a discretization of a Dirichlet obstacle problem by triangular linear finite elements. In contrast to usual iterative methods, the observed rate of convergence does not deteriorate with step size.The results presented here were announced at the XI. International Symposium on Mathematical Programming, Bonn, August 1982.  相似文献   

20.
We prove convergence of the whole sequence generated by any of a large class of iterative algorithms for the symmetric linear complementarity problem (LCP), under the only hypothesis that a quadratic form associated with the LCP is bounded below on the nonnegative orthant. This hypothesis holds when the matrix is strictly copositive, and also when the matrix is copositive plus and the LCP is feasible. The proof is based upon the linear convergence rate of the sequence of functional values of the quadratic form. As a by-product, we obtain a decomposition result for copositive plus matrices. Finally, we prove that the distance from the generated sequence to the solution set (and the sequence itself, if its limit is a locally unique solution) have a linear rate of R-convergence.Research for this work was partially supported by CNPq grant No. 301280/86.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号