首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
For a generalized Korteweg–de Vries equation, the existence of families of rapidly oscillating periodic solutions is proved and their asymptotic representation is found. The asymptotics of tori of different dimensions are examined. Formulas for solutions depending on all parameters of the problem are derived.  相似文献   

2.
Cauchy’s problem for a generalization of the KdV–Burgers equation is considered in Sobolev spaces H1(\mathbbR){H^1(\mathbb{R})} and H2(\mathbbR){H^2(\mathbb{R})}. We study its local and global solvability and the asymptotic behavior of solutions (in terms of the global attractors). The parabolic regularization technique is used in this paper which allows us to extend the strong regularity properties and estimates of solutions of the fourth order parabolic approximations onto their third order limit—the generalized Korteweg–de Vries–Burgers (KdVB) equation. For initial data in H2(\mathbbR){H^2(\mathbb{R})} we study the notion of viscosity solutions to KdVB, while for the larger H1(\mathbbR){H^1(\mathbb{R})} phase space we introduce weak solutions to that problem. Finally, thanks to our general assumptions on the nonlinear term f guaranteeing that the global attractor is usually nontrivial (i.e., not reduced to a single stationary solution), we study an upper semicontinuity property of the family of global attractors corresponding to parabolic regularizations when the regularization parameter e{\epsilon} tends to 0+ (which corresponds the passage to the KdVB equation).  相似文献   

3.
4.
An attempt has been made to obtain exact analytical traveling wave solution or simple wave solution of higher-order Korteweg–de Vries (KdV) equation by using tanh-method or hyperbolic method. The higher-order equation can be derived for magnetized plasmas by using the reductive perturbation technique. It is found that the exact solitary wave solution of higher-order KdV equation is obtained by tanh-method. Using this method, different kinds of nonlinear wave equations can be evaluated. The higher-order nonlinearity and higher-order dispersive effect can be observed from the solutions of the equations. The method is applicable for other nonlinear wave equations.  相似文献   

5.
Theoretical and Mathematical Physics - We survey recent results connected with constructing a new family of solutions of the Korteweg-de Vries equation, which we call primitive solutions. These...  相似文献   

6.
7.
The paper is devoted both to some initial–boundary value problems and to the Cauchy problem for the KdV equation.  相似文献   

8.
Complexiton solutions to the Korteweg–de Vires equation with self-consistent sources are presented. The basic technique adopted is the Darboux transformation. The resulting solutions provide evidence that soliton equations with self-consistent sources can have complexiton solutions, in addition to soliton, positon and negaton solutions. This also implies that soliton equations with self-consistent sources possess some kind of analytical characteristics that linear differential equations possess and brings ideas toward classification of exact explicit solutions of nonlinear integrable differential equations.  相似文献   

9.
10.
Multisoliton solutions of the modified Korteweg–de Vries–sine-Gordon (mKdV–SG) equation with time-dependent coefficients are considered. Cases describing changes in the shape of soliton solutions (kinks and breathers) observed in gradual transitions between the mKdV, SG, and mKdV–SG equations are numerically studied.  相似文献   

11.
We study the asymptotic behavior of the solution of a Korteweg–de Vries equation with an additive noise whose amplitude ε   tends to zero. The noise is white in time and correlated in space and the initial state of the solution is a soliton solution of the unperturbed Korteweg–de Vries equation. We prove that up to times of the order of 1/ε21/ε2, the solution decomposes into the sum of a randomly modulated soliton, and a small remainder, and we derive the equations for the modulation parameters. We prove in addition that the first order part of the remainder converges, as ε tends to zero, to a Gaussian process, which satisfies an additively perturbed linear equation.  相似文献   

12.
We study travelling wave solutions of a Korteweg–de Vries–Burgers equation with a non-local diffusion term. This model equation arises in the analysis of a shallow water flow by performing formal asymptotic expansions associated to the triple-deck regularisation (which is an extension of classical boundary layer theory). The resulting non-local operator is a fractional derivative of order between 1 and 2. Travelling wave solutions are typically analysed in relation to shock formation in the full shallow water problem. We show rigorously the existence of these waves. In absence of the dispersive term, the existence of travelling waves and their monotonicity was established previously by two of the authors. In contrast, travelling waves of the non-local KdV–Burgers equation are not in general monotone, as is the case for the corresponding classical KdV–Burgers equation. This requires a more complicated existence proof compared to the previous work. Moreover, the travelling wave problem for the classical KdV–Burgers equation is usually analysed via a phase-plane analysis, which is not applicable here due to the presence of the non-local diffusion operator. Instead, we apply fractional calculus results available in the literature and a Lyapunov functional. In addition we discuss the monotonicity of the waves in terms of a control parameter and prove their dynamic stability in case they are monotone.  相似文献   

13.
14.
Many real nonlinear evolution equations exhibiting soliton properties display a special superposition principle, where an infinite array of equally spaced, identical solitons constitutes an exact periodic solution. This arrangement is studied for the modified Korteweg–de Vries equation with positive cubic nonlinearity, which possesses algebraic solitons with nonvanishing far field conditions. An infinite sum of equally spaced, identical algebraic pulses is evaluated in closed form, and leads to a complex valued solution of the nonlinear evolution equation.  相似文献   

15.
16.
We consider the Korteweg–de Vries equation with a source. The source depends on the solution as polynomials with constant coefficients. Using the Painlevé test we show that the generalized Korteweg–de Vries equation is not integrable by the inverse scattering transform. However there are some exact solutions of the generalized Korteweg–de Vries equation for two forms of the source. We present these exact solutions.  相似文献   

17.
Theoretical and Mathematical Physics - We use the method of the inverse spectral problem to integrate the nonlinear Korteweg–de Vries equation with an additional term in the class of periodic...  相似文献   

18.
In the Korteweg–de Vries equation (KdV) context, we put forward a continuous version of the binary Darboux transformation (aka the double commutation method). Our approach is based on the Riemann–Hilbert problem and yields a new explicit formula for perturbation of the negative spectrum of a wide class of step-type potentials without changing the rest of the scattering data. This extends the previously known formulas for inserting/removing finitely many bound states to arbitrary sets of negative spectrum of arbitrary nature. In the KdV context, our method offers same benefits as the classical binary Darboux transformation does.  相似文献   

19.
20.
We consider the quintic generalized Korteweg–de Vries equation (gKdV) $$u_t + (u_{xx} + u^5)_x =0,$$ which is a canonical mass critical problem, for initial data in H 1 close to the soliton. In earlier works on this problem, finite- or infinite-time blow up was proved for non-positive energy solutions, and the solitary wave was shown to be the universal blow-up profile, see [16], [26] and [20]. For well-localized initial data, finite-time blow up with an upper bound on blow-up rate was obtained in [18]. In this paper, we fully revisit the analysis close to the soliton for gKdV in light of the recent progress on the study of critical dispersive blow-up problems (see [31], [39], [32] and [33], for example). For a class of initial data close to the soliton, we prove that three scenarios only can occur: (i) the solution leaves any small neighborhood of the modulated family of solitons in the scale invariant L 2 norm; (ii) the solution is global and converges to a soliton as t → ∞; (iii) the solution blows up in finite time T with speed $$\|u_x(t)\|_{L^2} \sim \frac{C(u_0)}{T-t} \quad {\rm as}\, t\to T.$$ Moreover, the regimes (i) and (iii) are stable. We also show that non-positive energy yields blow up in finite time, and obtain the characterization of the solitary wave at the zero-energy level as was done for the mass critical non-linear Schrödinger equation in [31].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号