首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of deposition power and seedlayer on the properties of hard magnet Co50Pt50 was studied. Co50Pt50(/Co90Fe10)/Ru/Co90Fe10 trilayer was used as pining/pinned layer in spin valves. The influences of different hard layer, soft layer and free layer on exchange bias, interlayer coupling, and magnetoresistance (MR) ratio were studied. Weak antiferromagnetic interlayer coupling was obtained by adjusting the thickness of hard and soft layers. MR of a spin valve with structure Cr2/CoFe0.5/CoPt4/CoFe0.5/Ru0.8/CoFe2.2/Cu2.05/CoFe2.6/Cu1.1/Ta1 reached 10.68% (unit in nm), which is comparable to those of IrMn-based synthetic spin valves. The increment of the coercivity of the free layer is mainly due to the static magnetic interaction between the hard layer and the free layer.  相似文献   

2.
A series of bulk polycrystalline Ag-added Fe3O4 with a nominal composition, (Fe3O4)1−xAgx (x is molar fraction) with x=0, 0.1, 0.2, 0.3, 0.4, and 0.5 have been prepared by conventional solid-state reaction. X-ray diffraction patterns show that the pure Fe3O4 sample (x=0) has a single-phase inverse spinel structure, while the Ag-added samples are two-phase composites consisting of a ferrimagnetic Fe3O4 phase and a non-magnetic metal Ag phase. The bright-field transmission electron microscopy images exhibit that the samples are typical granular solids with a porosity of about 22%. The addition of Ag slightly increases the average grain size of the Fe3O4 phase and significantly enhances the MR effect of bulk polycrystalline Fe3O4 samples. Of all the samples the x=0.3 sample has a maximal MR of −5.1% at 300 K in a magnetic field of 1 T, and −6.8% in 5 T, which are approximately three times greater than the corresponding MR values (−1.8% at 1 T and −2.4% at 5 T) of the Fe3O4 sample. This enhancement of the MR can be attributed to the combination effect from the spin-dependent scattering at the interfaces between the Fe3O4 grains and the Ag granules and the spin-polarized tunneling at grain boundaries of Fe3O4 phase of the spin-polarized electrons.  相似文献   

3.
We investigate the spin drag effect in spin polarized transport beyond the random phase approximation by considering an effective scattering potential that incorporates self-consistently the effects of the short range Coulomb interaction through momentum dependent local field corrections. We find that the first order many-body correction to the spin transresistivity is determined by the local field factor for opposite-spin correlations.  相似文献   

4.
Spin-transfer driven switching was observed in MgO based magnetic tunnelling junctions (MTJ) with tunnelling magnetoresistance ratio of up to 160% and the average intrinsic switching current density (Jc0) down to 2 MA/cm2, which are the best known results reported in spin-transfer switched MTJ nanostructures. Based on a comparison of results both from MgO and AlOx MTJs, further switching current decrease via MgO dual structures with two pinned layers is discussed.  相似文献   

5.
We investigate a perpendicular electric current passing through a “ferromagnetic nanojunction”, that is through some layered nanosized structure of spin-valve type, containing two ferromagnetic metallic layers. Spacer may be used between the metallic layers to prevent the rotation of the moving spin phases. Such an arrangement is typical for spin valves: one of the metallic layers has strongly pinned magnetic lattice and the other one has free magnetic lattice and free mobile spins. Further the conditions are derived to provide a very high nonequilibrium spin injection level. It appears that the so-called spin resistances of the constitutive layers should be in definite relations to each other. These relations lead to the situation where the spin injection becomes dominant and significantly suppresses the “ordinary” spin-transfer torque. As a result, the threshold current becomes lowered down to 2-3 and even more orders of magnitude.  相似文献   

6.
We report on magnetoresistance measurements in thin nickel films modulated by a periodic magnetic field emanating from micromagnetic arrays fabricated at the film surface. By increasing the strength of the magnetic potential using nickel and dysprosium micromagnets, we are able to quench the anisotropic magnetoresistance (AMR) in the film.  相似文献   

7.
We propose the ambipolar carrier transport by surface acoustic waves (SAWs) in a semiconductor quantum well (QW) for the realization of the Stern-Gerlach (SG) experiment in the solid phase. The well-defined and very low carrier velocity in the moving SAW field leads to a large deflection angle and thus to efficient spin separation, even for the weak field gradients and short (μm-long) interaction lengths that can be produced by micromagnets. The feasibility of a SG spin filter is discussed for different QW materials.  相似文献   

8.
We perform a qualitative analysis of phase locking in a double point-contact spin–valve system by solving the Landau–Lifshitz–Gilbert–Slonzewski equation using a hybrid-finite-element method. We show that the phase-locking behaviour depends on the applied field angle. Starting from a low field angle, the locking-current difference between the current through contact A and B increases with increasing angle up to a maximum of 14 mA at 30°, and it decreases thereafter until it reaches a minimum of 1 mA at 75°. The tunability of the phase-lock frequency with current decreases linearly with increasing out-of-plane angle from 45 to 21 MHz/mA.  相似文献   

9.
The coexistence of large positive and negative low-field magnetoresistance (LFMR) in the ferromagnetic La0.7Ca0.3MnO3 thin films with ordered microcrack (MC) distributions is reported. For the films with the highest linear density of MC, the negative LFMR can be up to −60% and rapidly changes to the positive value of 25% at 200 Oe field with the increase of temperature. We discuss the effect based on the spin-polarized tunneling and inhomogeneous magnetic state induced by the natural formations of MC in the films.  相似文献   

10.
A series of exchange-biased magnetic tunneling junctions (MTJs) were made in an in-plane deposition field (h) = 500 Oe. The deposition sequence was Si(1 0 0)/Ta(30 Å)/CoFeB(75 Å)/AlOx(d Å)/Co(75 Å)/IrMn(90 Å)/Ta(100 Å), where d was varied from 12 Å to 30 Å. The MTJ was formed by the cross-strip method with a junction area of 0.0225 mm2. The tunneling magnetoresistance (ΔR/R) of each MTJ was measured. The high-resolution cross-sectional transmission electron microscopic (HR X-TEM) image shows the very smooth interface and clear microstructure. X-ray diffraction (XRD) demonstrates that the IrMn layer of the MTJ exhibits a (1 1 1) texture. From the results (ΔR/R) increases from 17% to 50%, as d increases from 12 Å to 30 Å. The tunneling resistance (Ro) of these junctions ranges from 150 Ω to 250 Ω. The exchange-biasing field (Hex) of the MTJ is 50-95 Oe. Finally, the saturation resistance (Rs) was measured as a function of the angle (α) of rotation, where α is the angle between h and the in-plane saturation field (Hs) = 1.1 kOe. The following figure presents the dependence of Rs on α, instead of originally expected independence, the curve actually varies with a period of π.  相似文献   

11.
In this work we analyze the spin-polarized charge density distribution in the GeMn diluted ferromagnetic semiconductors (DFS). The calculations are performed within a self-consistent k·p method, in which the exchange correlation effects in the local density approximation, as well as the strain effects due to the lattice mismatch, are taken into account. Our findings show that the extra confinement potential provided by the barriers and the variation of the Mn content in the DFS are responsible for a separation between the different spin charge densities, giving rise to higher mobility spin-polarized currents or high ferromagnetism transition temperatures systems.  相似文献   

12.
We study the effect of spin Coulomb drag on the magnetoresistance and the spin-current injection efficiency of a layered structure consisting of a nonmagnetic semiconductor sandwiched between two ferromagnetic electrodes of spin polarization p. The calculations are done within the framework of the drift-diffusion theory, which we generalize to include the spin trans-conductivity σ↑↓. We find that for p close to 100% the spin drag enhances the magnetoresistance, while for smaller values of p it reduces it. A new approach to the measurement of σ↑↓ is suggested.  相似文献   

13.
Spintronics materials may be classified under concentrated magnetic semiconductors, semimetals and half-metals, semimagnetic semiconductors, and dilute magnetic semiconductors (DMS). The nature of ferromagnetism, that occurs in p-type DMS with an increase in the transition metal content, is governed by the proposed kinematic exchange involving the kinetic energy gain of the heavy hole carriers caused by their hybridization with 3d electrons of impurities. The synthesis of DMS (In,Mn)Sb is proposed on the basis of hint at its TC from kinematic mechanism. The effect of the dimensionality-driven TC increase is derived for spintronics materials such as delta-doped DMS (DDMS) and DMS heterostructures. The state-of-the-art in the field of synthesis and research of “new” DMS with announced “high TC” is also outlined with particular attention to chalcopyrite-based systems.  相似文献   

14.
La0.67Ca0.33MnO3/Alq3/Co sandwiched-structure organic spin valves are fabricated by vacuum thermal evaporation method. A giant magnetoresistance (GMR) of 14% is observed at low temperature 100K. At 30K, the magnetoresistance can increase to 50%. The large GMR of the device is attributed to the high spin polarization and low conductivity of the La0.67Ca0.33MnO3 contact. The magnetoresistance ΔR/R and the coercive field of the Co electrode depend strongly on temperature. The large high-field magnetoresistance reported on La0.67Sr0.33MnO3/Alq3/Co organic spin valves [Nature 427 (2004) 821] is not observed in our La0.67Ca0.33MnO3/Alq2/Co organic spin valves.  相似文献   

15.
16.
Huaizhe Xu  Qiqi Yan 《Physics letters. A》2008,372(40):6216-6220
Electron spin-dependent transport properties have been theoretically investigated in two-dimensional electron gas (2DEG) modulated by the magnetic field generated by a pair of anti-parallel magnetization ferromagnetic metal stripes and the electrostatic potential provided by a normal metal Schottky stripe. It is shown that the energy positions of the spin-polarization extremes and the width of relative spin conductance excess plateau could be significantly manipulated by the electrostatic potential strength and width, as well as its position relative to the FM stripes. These interesting features are believed useful for designing the electric voltage controlled spin filters.  相似文献   

17.
We have prepared nearly monodisperse Fe3O4 of ∼50 nm by a chemical route and investigated the electrical and magnetic transports of the composite granular system. A Verwey transition is observed in the vicinity of 113 K. Above and below the Verwey transition, the electrical transport is dominated by electron hopping behavior showing a good linear relation between resistance and T−1/2. The magnetoresistance (MR) increases with the applied field and does not follow the magnetization to reach the saturation at 10 KOe field. This indicates that the MR is mainly arising from the spin-dependent scattering of electrons through the grain boundaries. The temperature dependence of MR shows it has the highest MR value near the Verwey transition.  相似文献   

18.
19.
Inter-particle spin-polarized tunneling was measured in an organically capped magnetite nanocrystal (NC) array deposited between 30 nm spaced gold electrodes. Magnetoresistance (MR) measurements performed around the blocking temperature (Tb) of the magnetic moments of the particles in the array, which was relatively high (220 K), yielded negative MR values of the order of 10-25% under moderate magnetic fields of several kOe. The field dependence of the MR followed closely the square of the film's magnetization and its voltage dependence indicated maximal spin polarization around the Fermi level. These findings suggested that the measured MR is the result of spin-polarized tunneling between individual magnetite NCs acting as superparamagnetic spin polarizers.  相似文献   

20.
By means of the transfer matrix technique, the electronic transport through a quantum waveguide in the presence of a magnetic obstacle is investigated theoretically. By comparing the calculated conductance spectra of the opposite spin electrons, we find that there exists a notable spin filtering window in the low energy region. Dependences of such a spin filtering window on the size, position and potential strength of the magnetic obstacle are studied in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号