首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the output feedback H∞ control problem for a class of nonlinear stochastic systems. Based on the latest developed theory of stochastic dissipation, a notable result about the nonlinear H∞ output feedback control of deterministic system is generalized to the stochastic case. Finally, in the cases of state feedback and output feedback, two families of controllers are provided respectively.  相似文献   

2.
In this paper, a class of new coupled stochastic strict-feedback nonlinear systems with delays (CSFND) on networks without strong connectedness (NWSC) is considered, and the issue pertaining to the synchronization of the systems is discussed by pinning control. Towards CSFND, the controllers are approached by combining the back-stepping method and the design of virtual controllers. A key novel design ingredient is that the global Lyapunov function is obtained based on each Lyapunov function of stochastic strict-feedback nonlinear systems with delays (SFND). Moreover, a sufficient criterion is presented to realize the exponential synchronization by employing the graph theory and Lyapunov method. As a subsequent result, we apply the obtained theoretical results to the second-order oscillator systems and robotic arm systems. Meanwhile, numerical simulations are provided to demonstrate the validity and feasibility of our theoretical results.  相似文献   

3.
This article presents a new approach to robust quadratic stabilization of nonlinear stochastic systems. The linear rate vector of a stochastic system is perturbed by a nonlinear function, and this nonlinear function satisfies a quadratic constraint. Our objective is to show how linear constant feedback laws can be formulated to stabilize this type of stochastic systems and, at the same time maximize the bounds on this nonlinear perturbing function which the system can tolerate without becoming unstable. The new formulation provides a suitable setting for robust stabilization of nonlinear stochastic systems where the underlying deterministic systems satisfy the generalized matching conditions. Our sufficient conditions are written in matrix forms, which are determined by solving linear matrix inequalities (LMIs), which have significant computational advantage over any other existing techniques. Examples are given to demonstrate the results.  相似文献   

4.
In this paper, we propose a method for designing continuous gain-scheduled worst-case controller for a class of stochastic nonlinear systems under actuator saturation and unknown information. The stochastic nonlinear system under study is governed by a finite-state Markov process, but with partially known jump rate from one mode to another. Initially, a gradient linearization procedure is applied to describe such nonlinear systems by several model-based linear systems. Next, by investigating a convex hull set, the actuator saturation is transferred into several linear controllers. Moreover, worst-case controllers are established for each linear model in terms of linear matrix inequalities. Finally, a continuous gain-scheduled approach is employed to design continuous nonlinear controllers for the whole nonlinear jump system. A numerical example is given to illustrate the effectiveness of the developed techniques.  相似文献   

5.
Abstract

This article deals with the class of uncertain stochastic hybrid linear systems with noise. The uncertainties we are considering are of norm bounded type. The stochastic stabilization and robust stabilization problems are treated. Linear matrix inequality (LMI)-based sufficient conditions are developed to design the state feedback controller with constant gain that stochastically (robust stochastically) stabilizes the studied class of systems. Our results are mode independent and require only the complete access to the state vector. Numerical examples are given to show the effectiveness of the proposed results.  相似文献   

6.
Stock exchanges are modeled as nonlinear closed-loop systems where the plant dynamics is defined by known stock market regulations and the actions of agents are based on their beliefs and behavior. The decision of the agents may contain a random element, thus we get a nonlinear stochastic feedback system. The market is in equilibrium when the actions of the agents reinforce their beliefs on the price dynamics. Assuming that linear predictors are used for prediction of the price process, a stochastic approximation procedure for finding market equilibrium is described. The proposed procedure is analyzed using the theory of Benveniste et al. (Adaptive algorithms and stochastic approximations. Springer, Berlin, 1990). A simulation result is also presented.  相似文献   

7.
In this paper, smooth output feedback controllers are presented to stabilize a class of planar switched nonlinear systems with asymmetric output constraints (AOCs). A new common barrier Lyapunov function (CBLF) is developed to prevent the switched system from violating AOCs. Combining the adding a power integrator technique (APIT) and the CBLF, state feedback controllers are designed. Then, reduced-order nonlinear observers are constructed and smooth output feedback controllers are proposed to globally stabilize planar switched nonlinear systems under arbitrary switchings. Meanwhile, the system output meets the prescribed AOCs during operation. The method proposed in this paper is a unified tool because it works not only for switched nonlinear systems with asymmetric or symmetric output constrains but also for those without output constraints. Simulations are presented to verify the proposed method.  相似文献   

8.
For a class of risk-sensitive nonlinear stochastic control problems with dynamics in strict-feedback form, we obtain through a constructive derivation state-feedback controllers which (i) are locally optimal, (ii) are globally inverse optimal, and (iii) lead to closed-loop system trajectories that are bounded in probability. The first feature implies that a linearized version of these controllers solve a linear exponential-quadratic Gaussian (LEQG) problem, and the second feature says that there exists an appropriate cost function according to which these controllers are optimal.  相似文献   

9.
In this paper, the filtering problem is investigated for a class of nonlinear discrete-time stochastic systems with state delays. We aim at designing a full-order filter such that the dynamics of the estimation error is guaranteed to be stochastically, exponentially, ultimately bounded in the mean square, for all admissible nonlinearities and time delays. First, an algebraic matrix inequality approach is developed to deal with the filter analysis problem, and sufficient conditions are derived for the existence of the desired filters. Then, based on the generalized inverse theory, the filter design problem is tackled and a set of the desired filters is explicitly characterized. A simulation example is provided to demonstrate the usefulness of the proposed design method.  相似文献   

10.
This paper considers the global stability and stabilization of more general stochastic nonlinear systems. Due to the absence of the conventional assumptions (e.g., Lipschitz condition), the stochastic nonlinear systems under investigation may have more than one weak solution. However, the most associated results are only applicable to the stochastic systems having a unique strong solution, and therefore, it is meaningful to refine and extend the relevant concepts and methods to the more general case. In this paper, the concepts of stochastic stability in the more general sense are first introduced to cover the stochastic nonlinear systems having more than one weak solution. Then, the generalized stochastic Barbashin–Krasovskii theorem and LaSalle theorem are established, which present the criterions of stochastic stability for more general stochastic nonlinear systems. As one of the main contributions in this paper, we rigorously prove the generalized stochastic Barbashin–Krasovskii theorem. Moreover, based on the generalized theorems, the output-feedback and state-feedback stabilization are accomplished respectively for two classes of high-order stochastic nonlinear systems under rather weaker assumptions comparing to the existing literature.  相似文献   

11.
This paper deals with the stability for a class of nonlinear composite stochastic systems by feedback laws.Firstly,we give sufficient conditions for the existence of feedback laws which render the equilibrium solution of the stochastic system globally asymptotically stable in probability.Secondly,for stochastic systems of the same type,we prove that there exists a linear feedback law which exponentially stabilizes in mean square the closed–loop stochastic system at its equilibrium.  相似文献   

12.
This paper deals with the class of uncertain continuous-time linear stochastic hybrid systems with Wiener process. The uncertainties that we are considering are of the norm-bounded type. The robust stochastic stabilization problem is treated. LMIs based sufficient conditions are developed to design the state feedback controller that robustly and stochastically stabilizes the studied class of systems and at the same time rejects a disturbance of desired level. The minimum disturbance rejection is also determined. A numerical example is provided to show the validity of the proposed results.  相似文献   

13.
This paper is concerned with the controllability of a kind of nonlinear stochastic impulsive functional systems. Sufficient conditions for the complete controllability of the nonlinear stochastic impulsive functional systems are obtained by using Schauder fixed-point theorem. A numerical example is given to illustrate the effectiveness of the theoretical results.  相似文献   

14.
In this paper, a protocol-based controller is designed for nonlinear systems with multiple sensors, which are powered by environment-dependent energy harvesting (EDEH) devices. The Round–Robin (RR) protocol is adopted to coordinate the data transmission of sensors. The protocol-based transmission can be realized only when the energy harvested by EDEH devices is sufficient. The aim of this paper is to design the protocol-based controller to ensure the stochastic finite-time boundedness with EDEH and RR protocol. Firstly, modeling the EDEH by a switching sequence with varying sojourn probabilities, assuming a finite battery capacity constraint, and associating protocol-based transmission with a given energy cost, we propose a new recursive model to depict the dynamic of energy levels for each sensor. Then, combining with the stochastic analysis method and the dynamic of energy levels, the explicit expressions of the controller for each environment with average dwell time (ADT) are obtained. Finally, an example is provided to demonstrate the effectiveness of the designed controllers.  相似文献   

15.
This article establishes existence and uniqueness of solutions to two classes of stochastic systems with finite memory subject to anticipating initial conditions which are sufficiently smooth in the Malliavin sense. The two classes are semilinear stochastic functional differential equations (sfdes) and fully nonlinear sfdes with a sublinear drift term. For the semilinear case, we use Malliavin calculus techniques, existence of the stochastic semiflow and an infinite-dimensional substitution theorem. For the fully nonlinear case, we employ an anticipating version of the Itô–Ventzell formula due to Ocone and Pardoux [D. Ocone, E. Pardoux, A generalized Itô–Ventzell formula. Application to a class of anticipating stochastic differential equations, Annales de l’Institut Henri Poincaré. Probabilité s et Statistiques 25 (1) (1989) 39–71]. In both cases, the use of Malliavin calculus techniques is necessitated by the infinite dimensionality of the initial condition.  相似文献   

16.
In this paper, the property of practical input-to-state stability and its application to stability of cascaded nonlinear systems are investigated in the stochastic framework. Firstly, the notion of (practical) stochastic input-to-state stability with respect to a stochastic input is introduced, and then by the method of changing supply functions, (a) an (practical) SISS-Lyapunov function for the overall system is obtained from the corresponding Lyapunov functions for cascaded (practical) SISS subsystems.  相似文献   

17.
The guaranteed cost control (GCC) problem involved in decentralized robust control of a class of uncertain nonlinear large-scale stochastic systems with high-order interconnections is considered. After determining the appropriate conditions for the stochastic GCC controller, a class of decentralized local state feedback controllers is derived using the linear matrix inequality (LMI). The extension of the result of the study to the static output feedback control problem is discussed by considering the Karush-Kuhn-Tucker (KKT) conditions. The efficiency of the proposed design method is demonstrated on the basis of simulation results.  相似文献   

18.
针对一类带有摄动的随机严格反馈非线性系统,引入积分型Lyapunov函数,利用神经网络的逼近能力,后推设计方法以及Young's不等式,构造出一类简单有效的自适应神经网络状态反馈控制器,在一定条件下,通过Lyapunov方法,证明了闭环系统的所有信号在二阶或四阶矩意义下半全局一致终结有界.仿真结果验证了所提控制方案的有效性.  相似文献   

19.
Abstract

This article is concerned with the problem of guaranteed cost control for a class of uncertain stochastic impulsive systems with Markovian switching. To the best of our knowledge, it is the first time that such a problem is investigated for stochastic impulsive systems with Markovian switching. For an uncontrolled system, the conditions in terms of certain linear matrix inequalities (LMIs) are obtained for robust stochastical stability and an upper bound is given for the cost function. For the controlled systems, a set of LMIs is developed to design a linear state feedback controller which can stochastically stabilize the class of systems under study and guarantee the given cost function to have an upper bound. Further, an optimization problem with LMI constraints is formulated to minimize the guaranteed cost of the closed-loop system. Finally, a numerical example is provided to show the effectiveness of the proposed method.  相似文献   

20.
This paper is concerned with the problem of robust reliable control for a class of uncertain stochastic switched nonlinear systems under asynchronous switching, where the switching instants of the controller experience delays with respect to those of the system. A design scheme for the reliable controller is proposed to guarantee almost surely exponential stability for stochastic switched systems with actuator failures, and the dwell time approach is utilized for the stability analysis. Then the approach is extended to take into account stochastic switched system with Lipschitz nonlinearities and structured uncertainties. Finally, a numerical example is employed to verify the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号