首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy L of such models, and constraints extracted on L from confronting them with observations. We focus on six sets of observations and proposed explanations: i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust; ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer; iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden recoupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning; iv) the frequencies of quasi-periodic oscillations in the X-ray tail of light curves from giant flares from soft gamma-ray repeaters, confronting models of torsional crust oscillations; v) the upper limit on the frequency to which millisecond pulsars can be spun-up due to accretion from a binary companion, confronting models of the r-mode instability arising above a threshold frequency determined in part by the viscous dissipation timescale at the crust-core boundary; and vi) the observations of precursor electromagnetic flares a few seconds before short gamma-ray bursts, confronting a model of crust shattering caused by resonant excitation of a crustal oscillation mode by the tidal gravitational field of a companion neutron star just before merger.  相似文献   

2.
Cosmological models with cold dark matter composed of weakly interacting particles predict overly dense cores in the centers of galaxies and clusters and an overly large number of halos within the Local Group compared to actual observations. We propose that the conflict can be resolved if the cold dark matter particles are self-interacting with a large scattering cross section but negligible annihilation or dissipation. In this scenario, astronomical observations may enable us to study dark matter properties that are inaccessible in the laboratory.  相似文献   

3.
Gamma-ray bursts (GRBs) are short and intense emission of soft γ-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy γ-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.  相似文献   

4.
Gamma-ray bursts (GRBs) are short and intense emission of soft γ-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy γ-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.  相似文献   

5.
Recent x-ray observations revealed that strong cooling flow of intracluster gas is not present in galaxy clusters, even though it is predicted theoretically if there is no additional heating source. I show that relativistic particles produced by dark matter neutralino annihilation in cluster cores provide a sufficient heating source to suppress the cooling flow, under reasonable astrophysical circumstances including adiabatic growth of central density profile, with appropriate particle physics parameters for dark matter neutralinos. In contrast to other astrophysical heat sources, such as active galactic nuclei, this process is a steady and stable feedback over cosmological time scales after turned on.  相似文献   

6.
Gamma-ray bursts (GRBs) are short and intense emission of soft γ-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy γ-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.   相似文献   

7.
We present the synthesis and magnetic properties of high quality uncoated and gold-coated iron oxide magnetic nanoparticles. The structural properties of these nanoparticles are investigated by transmission electron microscopy, UV-visible spectroscopy and X-ray diffraction. Experimental results and theoretical simulations indicate that the synthesized nanoparticles present a very good monodispersity, and well defined size and shape. The coercive field of these particles is identified by low-temperature first-order reversal curves and the results used in order to fit zero-field-cooled magnetization processes with theoretical models. The identification of the parameters in this analysis suggests that the coating process hardly affects the morphology and the overall magnetic properties of the cores inside coated particles.  相似文献   

8.
We discuss the prospects of constraining the properties of a dark energy component, with particular reference to a time varying equation of state, using future cluster surveys selected by their Sunyaev-Zel'dovich effect. We compute the number of clusters expected for a given set of cosmological parameters and propogate the errors expected from a variety of surveys. In the short term they will constrain dark energy in conjunction with future observations of type Ia supernovae, but may in time do so in their own right.  相似文献   

9.
《Physics Reports》2004,399(1):1-70
Old, cool white dwarfs convey valuable information about the early history of our Galaxy. They have been used to determine the age of the Galactic disk, several open clusters and a globular cluster. We review the current understanding of the physics of cool white dwarfs, including their mass distribution, chemical evolution, and cooling. We also examine the role of white dwarfs as tracers of various stellar populations, both in terms of observational searches and theoretical models.  相似文献   

10.
In this article, we review the state of the art on the transport properties of quantum dot systems connected to superconducting and normal electrodes. The review is mainly focused on the theoretical achievements, although a summary of the most relevant experimental results is also given. A large part of the discussion is devoted to the single-level Anderson-type models generalized to include superconductivity in the leads, which already contains most of the interesting physical phenomena. Particular attention is paid to the competition between pairing and Kondo correlations, the emergence of π-junction behavior, the interplay of Andreev and resonant tunneling, and the important role of Andreev bound states that characterized the spectral properties of most of these systems. We give technical details on the several different analytical and numerical methods which have been developed for describing these properties. We further discuss the recent theoretical efforts devoted to extend this analysis to more complex situations like multidot, multilevel or multiterminal configurations in which novel phenomena is expected to emerge. These include control of the localized spin states by a Josephson current and also the possibility of creating entangled electron pairs by means of non-local Andreev processes.  相似文献   

11.
Other nongravitational heating processes are needed to resolve the disagreement between the absence of cool gas components in the centers of galaxy clusters revealed recently by Chandra and XMM observations and the expectations of conventional radiative cooling models. We propose that the interaction between dark matter and baryonic matter may act as an alternative for the reheating of intracluster medium (ICM) in the inner regions of clusters, in which kinetic energy of dark matter is transported to ICM to balance radiative cooling. Using the Chandra and XMM data, we set a useful constraint on the dark-matter-baryon cross section: sigma(xp)/m(x) approximately 1x10(-25) cm(2) GeV-1, where m(x) is the mass of dark matter particles.  相似文献   

12.
We review some statistical many-agent models of economic and social systems inspired by microscopic molecular models and discuss their stochastic interpretation. We apply these models to wealth exchange in economics and study how the relaxation process depends on the parameters of the system, in particular on the saving propensities that define and diversify the agent profiles.  相似文献   

13.
We demonstrate cooling of 104 antiprotons in a dense, cold plasma of 108 positrons, confined in a nested cylindrical Penning trap at about 15 K. The time evolution of the cooling process has been studied in detail, and several distinct types of behavior identified. We propose explanations for these observations and discuss the consequences for antihydrogen production. We contrast these results with observations of interactions between antiprotons and “hot” positrons at about 3000 K, where antihydrogen production is strongly suppressed.  相似文献   

14.
Dendrimers are highly branched molecules, which are expected to be useful, for example, as efficient artificial light harvesting systems, in nano-technological or in medical applications. There are two different classes of dendrimers: compact dendrimers with constant distance between neighboring branching points throughout the macromolecule and extended dendrimers, where this distance increases from the system periphery to the center. We investigate the linear optical absorption spectra of these dendrimer types using the Frenkel exciton concept. The electron-phonon interaction is taken into account by introducing a heat bath that interacts with the exciton in a stochastic manner. We discuss compact dendrimers with equal excitation energies at all molecules, dendrimers with a functionalized core as well as with a whole branch functionalized. Furthermore the line shape of a compact dendrimer is discussed when neighboring molecules at the periphery interact and when all molecules have randomly distributed excitation energies due to disorder. Finally, we discuss two models for extended dendrimers.  相似文献   

15.
Recent progress from experiments on clusters and free nanoparticles is reported, where emphasis is put on studies in the soft X-ray regime. We review selected examples on the characterization of free molecular clusters and nanoparticles. Specifically, we discuss recent progress in changes of the local structure in free clusters. Photoemission and particle charging as well as elastic light scattering from free nanoparticles are reported. These approaches permit the characterization of the intrinsic properties of nanoscopic systems as building blocks of nanoscopic matter and possible nanomaterials.  相似文献   

16.
17.
Using a general classification of dark enegy models in four classes, we discuss the complementarity of cosmological observations to tackle down the physics beyond the acceleration of our universe. We discuss the tests distinguishing the four classes and then focus on the dynamics of the perturbations in the Newtonian regime. We also exhibit explicitely models that have identical predictions for a subset of observations.  相似文献   

18.
Nanostructured titanium dioxide films have been deposited by supersonic cluster beam deposition (CBD). Nanoparticles are produced by a pulsed microplasma cluster source (PMCS) and selected by aerodynamic separation effects. The as-deposited film is a complex mixture where amorphous material coexists, at the nanoscale, with anatase and rutile crystal phases. The nanocrystalline fraction of the film is characterized by crystal size ranging from 100 nm to less than 5 nm. We have characterized the film structure by transmission electron microscopy, Raman spectromicroscopy, X-ray diffraction, and UV-visible spectroscopy showing that correlations exist between cluster size and film properties. In particular if very small clusters are deposited, the film shows a predominant rutile phase whereas larger clusters form films with mainly anatase structure. Our observations suggest that phonon confinement effects are responsible for a significant shift and broadening observed for the Raman peaks. In addition, optical gap tuning is provided by mass selection: large clusters assembling generates a film with 3.22 eV optical gap, while smallest clusters 3.52 eV.  相似文献   

19.
20.
Somnath Bharadwaj 《Pramana》1999,53(6):977-987
We briefly discuss some aspects of the problem of forming large scale structures in the Universe. The basic picture that initially small perturbations generated by inflation grow by the process of gravitational instability to give the observed structures is largely consistent with the observations. The growth of the perturbations depends crucially on the contents of the Universe, and we discuss a few variants of the cold dark matter model. Many of these models are consistent with present observations. Future observations hold the possibility of deciding amongst these models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号