首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
A general feature of TeV-scale radiative seesaw models, in which tiny neutrino masses are generated via loop corrections, is an extended scalar (Higgs) sector. Another feature is the Majorana nature; e.g., introducing right-handed neutrinos with TeV-scale Majorana masses under the discrete symmetry, or otherwise introducing some lepton number violating interactions in the scalar sector. We study phenomenological aspects of these models at collider experiments. We find that, while properties of the extended Higgs sector of these models can be explored to some extent, the Majorana nature of the models can also be tested directly at the International Linear Collider via the electron–positron and electron–electron collision experiments.  相似文献   

2.
We update instability and metastability bounds of the Standard Model electroweak vacuum in view of the recent ATLAS and CMS Higgs results. For a Higgs mass in the range 124–126 GeV, and for the current central values of the top mass and strong coupling constant, the Higgs potential develops an instability around 1011 GeV, with a lifetime much longer than the age of the Universe. However, taking into account theoretical and experimental errors, stability up to the Planck scale cannot be excluded. Stability at finite temperature implies an upper bound on the reheat temperature after inflation, which depends critically on the precise values of the Higgs and top masses. A Higgs mass in the range 124–126 GeV is compatible with very high values of the reheating temperature, without conflict with mechanisms of baryogenesis such as leptogenesis. We derive an upper bound on the mass of heavy right-handed neutrinos by requiring that their Yukawa couplings do not destabilize the Higgs potential.  相似文献   

3.
We propose a unified scenario to generate the masses of Dirac neutrinos and cold dark matter at the TeV scale, understand the origin of dark energy and explain the matter–antimatter asymmetry of the universe. This model can lead to significant impact on the Higgs searches at LHC.  相似文献   

4.
To generate the lepton and quark masses in the left–right symmetric models, we can consider a universal seesaw scenario by integrating out heavy fermion singlets which have the Yukawa couplings with the fermion and Higgs doublets. The universal seesaw scenario can also accommodate the leptogenesis with Majorana or Dirac neutrinos. We show that the fermion singlets can obtain their heavy masses from the Peccei–Quinn symmetry breaking.  相似文献   

5.
The lightest supersymmetric particle (LSP) is a natural candidate for the cold dark matter of the universe. In this Letter we discuss how to test the mechanism responsible for the LSP stability at the LHC. We note that if R-parity is conserved dynamically one should expect a Higgs boson which decays mainly into two right-handed neutrinos (a “leptonic” Higgs) or into two sfermions. The first case could exhibit spectacular lepton number violating signals with four secondary vertices due to the long-lived nature of right-handed neutrinos. These signals, together with the standard channels for the discovery of SUSY, could help to establish the underlying theory at the TeV scale.  相似文献   

6.
The Higgs sector of the Standard Model (SM) with one right-handed neutrino per family is systematically analyzed. In a model with intergenerational independent mixings between families, we can account for very light neutrinos acquiring Majorana masses radiatively at the first electroweak loop level. We also find that in such a scenario the Higgs coupling to the light-heavy neutrinos and to the heavy-heavy ones may be remarkably enhanced with significant implications for the production of these heavy neutrinos at high energy colliders.  相似文献   

7.
Leptogenesis is usually realized through decays of heavy particles. In this Letter we consider another possibility of generating a lepton asymmetry through annihilations of heavy particles. We demonstrate our idea with a realistic extension of the standard model containing a heavy doublet and a light singlet scalars in addition to right-handed neutrinos and Higgs triplets required for type-I + II seesaw of neutrino masses. We also clarify that this annihilating leptogenesis scenario can be naturally embedded in more fundamental theories, like left–right symmetric models or grand unified theories.  相似文献   

8.
It is shown that Dirac-type neutrinos display BCS superfluidity for any nonzero mass. The Cooper pairs are formed by attractive scalar Higgs boson exchange between left- and right-handed neutrinos; in the standard SU(2) x U(1) theory, right-handed neutrinos do not couple to any other boson. The value of the gap, the critical temperature, and the Pippard coherence length are calculated for arbitrary values of the neutrino mass and chemical potential. Although such a superfluid could conceivably exist, detecting it would be a major challenge.  相似文献   

9.
We identify the range of parameters for which the sterile neutrinos can simultaneously explain the cosmological dark matter and the observed velocities of pulsars. To satisfy all cosmological bounds, the relic sterile neutrinos must be produced sufficiently cold. This is possible in a class of models with a gauge-singlet Higgs boson coupled to the neutrinos. Sterile dark matter can be detected by the x-ray telescopes. The presence of the singlet in the Higgs sector can be tested at the CERN Large Hadron Collider.  相似文献   

10.
We consider type I + II seesaw mechanism, where the exchanges of both right-handed neutrinos and isotriplet Higgs bosons contribute to the neutrino mass. Working in the left-right symmetric framework and assuming the mass matrix of light neutrinos m(v) and the Dirac-type Yukawa couplings to be known, we find the triplet Yukawa coupling matrix f, which carries the information about the masses and mixing of the right-handed neutrinos. We show that in this case there exists a duality: for any solution f, there is a dual solution [symbol: see text] = m(v)/nu(L) - f, where nu(L) is the vacuum expectation value of the triplet Higgs boson. Thus, unlike in pure type I (II) seesaw, there is no unique allowed structure for the matrix f. For n lepton generations the number of solutions is 2(n). We develop an exact analytic method of solving the seesaw nonlinear matrix equation for f.  相似文献   

11.
A neutral Higgs boson is added into the traditional electroweak chiral Lagrangian by writing down all possible high dimension operators. The matter part of the Lagrangian is investigated in detail. We find that if Higgs field dependence of Yukawa couplings can be factorized out, there will be no flavour changing neutral couplings; neutral Higgs can induce coupling between light and heavy neutrinos.  相似文献   

12.
In a class of extended Higgs structures containing a light or massless pseudoscalar it is quite likely the normal Wienberg-Salam Higgs particle decays preferentially into spin-zero bosons if its mass is below the tt threshold. These spin-zero bosons may be invisible either because they do not decay or because they decay into neutrinos. Thus Higgs particles may be light enough to be produced at accessible energies but difficult to detect through their decay products.  相似文献   

13.
The SO(3) gauge extension of SM, which is proposed to present a successfulexplanation for the observed small masses of neutrino and the nearly tri-bimaximal neutrino mixing, predicted the vector-like SO(3) triplet Majorana neutrinos and SUL(2) double Higgs bosons. In this work we calculate branching ratios of the charged lepton flavor violating decays lIlJV (V=γ,Z) induced by these Majorana neutrinos and Higgs bosons. We find that under the model parameters constrained by experimental bounds on the decays Z→lIlJ, the branching ratio of decays lI→lJγ can be up to 10-10, which may be accessible at the future experiments.  相似文献   

14.
The diagonalization of the leptonic mass matrices is performed in the framework of the triplet model to generate Majorana mass terms for neutrinos. This allows the understanding of the role played by the CP-violating phases in the Higgs sector and their relation with those of the charged-current Lagrangian. It is shown that all the leptonic mixings, including those of the Higgs couplings, can be given in terms of a Kobayashi-Maskawa matrix and the relative Majorana phases of the neutrino fields. The characteristic Majorana phases, always appearing together with the neutrino mass, are present in |ΔL|=2 pieces and they show up in processes with a) neutrino-antineutrino propagation, and/or b) at least two different neutrinos as asymptotic states, and/or c) a vertex with a doubly-charged scalar. The phenomenological implications for processes with these characteristics are given.  相似文献   

15.
The model with the gauge group, containing one bidoublet and two triplets in the Higgs sector, is considered. The link between the constants determining the physical Higgs boson interactions and the neutrino oscillation parameters is found. It is shown that the observation of the ultrahigh-energy neutrinos with the help of the processes , gives us information on the singly charged Higgs bosons. The processes of the doubly charged Higgs bosons production, , are investigated. From the point of view of detecting the neutral Higgs bosons the process of the electron–muon recharge is studied. Received: 29 January 1999 / Revised version: 20 September 1999 / Published online: 3 February 2000  相似文献   

16.
The production of heavy Dirac and Majorana neutrinos ine + e ? collisions is investigated. The heavy Dirac and/or Majorana neutrinos can be produced in charged and neutral current processes $(e^ + e^ - \to N_1 \bar N_2 )$ . The production of a single heavy neutrino is possible if it mixes with the light neutrino species. The production of heavy neutrinos in Higgs channels is also studied, since in some specific models the Yukawa couplings could be large enough to make the production of heavy neutrinos through Higgs boson exchanges sufficiently large for detection. The most general left-right symmetric model with possibly complexV orA couplings is used in the analytic calculations of the production cross sections, but the numerical examples are given using simplified left-right symmetric model. The interference terms between different production channels have been studied in great detail and in some cases the interference terms are found to be non-negligible in wide range of production spectrum. The pair production cross section is larger in the Dirac case than it is in the Majorana case, but the single heavy Majorana neutrino production cross section is roughly twice as large as that of a Dirac neutrino.  相似文献   

17.
Exact consequences of universality within SU(2) × U(1) gauge models, with leptons in doublets and singlets, and for arbitrary vacuum expectation values of the Higgs fields, imply an extended Weinberg-Salam structure for leptons, with all neutrinos massless (the inverse statement is obvious). We also discuss approximate universality.  相似文献   

18.
We suggest new simple model of generating tiny neutrino masses through a TeV-scale seesaw mechanism without requiring tiny Yukawa couplings. This model is a simple extension of the standard model by introducing extra one Higgs singlet, and one Higgs doublet with a tiny vacuum expectation value. Experimental constraints, electroweak precision data and no large flavor changing neutral currents, are satisfied since the extra doublet only has a Yukawa interaction with lepton doublets and right-handed neutrinos, and their masses are heavy of order a TeV-scale. Since active light neutrinos are Majorana particles, this model predicts a neutrinoless double beta decay.  相似文献   

19.
We present a general calculation of the two-body decay rates of the nucleon, for the most general form of four-fermion ΔB = ΔL operators, in the framework of the SU(6) non-relativistic quark model. We have applied our general formulas to Higgs mediated decays in conventional and in supersymmetric SU(5) models. Lower bounds upon the exchanged particles masses are given. We point out that the hierarchies of branching ratios in decays mediated by Higgs bosons are different from those of gauge boson decay modes (in the former case, neutrinos modes are dominant). We give, in conclusion, an experimental way to distinguish non-supersymmetric GUTs from supersymmetric ones, if the nucleon decays via Higgs bosons.  相似文献   

20.
We point out some interesting consequences of antisymmetric fermionic mass terms in grand unified theories, which follow from the symmetry properties of the Yukawa-type fermion-Higgs interactions. In SU(5), we show that an antisymmetric mass matrix M(u) in the up-quark sector arises when the Higgs 5 is replaced by 45. IOn SO(10), all the fermion sectors are characterized by such mass matrices if the neutrinos are required not to pick up the ordinary fermionic mass scale. In the recently proposed vertical-horizontal symmetric SU(5) × SU(5) scheme, a fully antisymmetric M(u) is naturally accompanied by exactly five zeroth-order massless neutrinos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号