首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of electrical resistivity are presented for polycrystalline alloys in the CePt2(Si1−xSnx)2 system. Results of X-ray diffraction indicate that the tetragonal region of the CePt2(Si1−xSnx)2 alloy system that is amenable for study only extends up to x=0.3. The resistivity maximum characteristic of a Kondo lattice is observed at a temperature Tmax=63 K for the parent compound CePt2Si2 and shifts to lower temperatures with increase in Sn content. The compressible Kondo lattice model is applied to describe the results of Tmax in terms of the on-site Kondo exchange interaction J and the electron density of states at the Fermi level N(EF). A value of |JN(EF)|=0.060±0.009 for the parent compound is obtained from the experimental results.  相似文献   

2.
The thermal phase transition of RbMnFe(CN)6 has been observed by Mn and Fe 3p-1s X-ray emission spectroscopy (XES) and 1s X-ray absorption spectroscopy (XAS). The thermal variations of the spin states and the valences of Mn and Fe were determined to be Mn2+(S=5/2)-NC-Fe3+(S=1/2) for the high-temperature (HT) phase and Mn3+(S=2)-NC-Fe2+(S=0) for the low-temperature (LT) phase. These transitions are thus caused by charge transfer between Mn and Fe. The temperature dependences of Mn and Fe 3p-1s XES and 1s XAS were observed as the composition of the spectra of the HT and LT phases. The ratios of the HT component in each spectrum show good agreement with the thermal transition curves observed with magnetic susceptibility measurements.  相似文献   

3.
Quasibinary Laves systems (Ce1−xLax)Ru2 and (Ce1−yCay)Ru2 doped with 111In were synthesized at a pressure of 8 GPa, and variations of the electric quadrupole interaction of 111Cd at the Ru sites have been studied by the method of time-differential perturbed angular correlation in a wide range of Ce-La and Ce-Ca relative concentrations. In the first case two sites with quadrupole frequencies νQ≅220 and 150 MHz persist at x≤0.2, while at x≥0.3 only the higher frequency component remains in the spectra, which are similar to that of pure LaRu2. In the series (Ce1−yCay)Ru2, at y≥0.03 the lower frequency component was washed out except in samples with y=0.1 and 0.2, where it was restored.  相似文献   

4.
Considering certain interesting features in the previously reported 166Er Mössbauer effect, and neutron diffraction data on the polycrystalline form of ErPd2Si2 crystallizing in the ThCr2Si2-type tetragonal structure, we have carried out magnetic measurements (1.8–300 K) on the single crystalline form of this compound. We observe significant anisotropy in the absolute values of magnetization (indicating that the easy axis is c-axis) as well as in features due to magnetic ordering in the plot of magnetic susceptibility χ versus temperature T at low temperatures. The χ(T) data reveal that there is a pseudo-low-dimensional magnetic order setting in at 4.8 K, with a three-dimensional antiferromagnetic order setting in at a lower temperature (3.8 K). A new finding in the χ(T) data is that, for H∥〈1 1 0〉 but not for H∥〈0 0 1〉, there is a broad shoulder in the range 8–20 K, indicative of the existence of magnetic correlations above 5 K as well, which could be related to the previously reported slow-relaxation-dominated Mössbauer spectra. Interestingly, the temperature coefficient of electrical resistivity is found to be isotropic; no feature due to magnetic ordering could be detected in the electrical resistivity data at low temperatures, which is attributed to magnetic Brillioun-zone boundary gap effects. The results reveal the complex nature of magnetism of this compound.  相似文献   

5.
The influence of the substitution of Ga atoms for Co atoms in DyCo2 compounds on magnetocaloric properties has been investigated. A series of DyCo2−xGax alloys with x=0, 0.03, 0.06, 0.1, 0.15, and 0.2 was prepared by the arc-melting method for this investigation. Experimental results revealed that the Ga substitution for Co in DyCo2 can form a single phase with the cubic Laves phase structure up to x=0.2. As the Ga content x increases, the lattice parameter and the Curie temperature Tc increases from 143 to 196 K linearly. The maximum magnetic entropy changes in a low field change of 0-1.5 T, increasing from 8.24 to 10.61 J/K kg when the Ga content x increases from 0 to 0.03, but decreasing gradually to 3.51 J/K kg as the Ga content further increases to x=0.2. All the samples show a relatively large magnetic entropy change with very small hysteresis loss.  相似文献   

6.
Highly a-axis-textured CrO2 films have been deposited on Al2O3 (0001) substrates by chemical vapor deposition. CrO2 has been found to have highly a-axis (010)-oriented columnar growth on a Cr2O3 (0001) initial layer. The six-fold surface symmetry of the Cr2O3 initial layer leads to three equivalent in-plane orientations of the a-axis-oriented CrO2 unit cell. We report Cr L2,3 X-ray magnetic circular dichroism data along the surface normal and at 60° off-normal sample orientation. For a 60° sample alignment, a strong increase of the projected orbital moment could be observed for unoccupied majority t2g states using moment analysis. Therefore, the c axis is identified as the intrinsic magnetic easy axis of CrO2. In addition, a small spin moment and a very strong magnetic dipole term Tz have been found. Received: 8 January 2002 / Accepted: 8 January 2002  相似文献   

7.
The hydrogen absorption properties of CeMnGe, CeFeSi and CeCoX (X=Si and Ge) have been investigated. Neutron powder diffraction performed on deuteride CeCoGeD indicates that D-atoms are inserted in the pseudo-tetrahedral interstices [Ce4] of the tetragonal CeFeSi-type structure of this compound. Magnetization and electrical resistivity measurements reveal that the hydrogenation of: (i) CeCoSi and CeCoGe leads to the transition antiferromagnet→spin fluctuation behaviour; (ii) CeMnGe suppress the magnetic ordering of the Ce-moments. These results which suggest a lost of ordered magnetic moment on the Ce site after hydrogenation could result from the chemical effect of hydrogen which prevails over the unit cell expansion effect.  相似文献   

8.
9.
The magnetocaloric effect (MCE) in the DyNi2, DyAl2 and Tb1−nGdnAl2 (n=0, 0.4, 0.6) was theoretically investigated in this work. The DyNi2 and DyAl2 compounds are described considering a model Hamiltonian which includes the crystalline electrical field anisotropy. The anisotropic MCE was calculated changing the magnetic field direction from 〈1 1 1〉 to 〈0 0 1〉 in DyNi2 and from 〈1 0 0〉 to 〈0 1 1〉 in DyAl2. The influence of the second- and first-order spin-reorientation phase transitions on the MCE that occurs in these systems is discussed. For the calculations of the MCE thermodynamic quantities in the Tb1−nGdnAl2 systems we take into account a two sites magnetic model, and good agreement with the available experimental data was obtained.  相似文献   

10.
First-principles calculations of electronic structure and magnetic properties based on density-functional theory were performed for MnFeP1−xSix (0.44?x?0.60) alloys which are considered as promising magnetocaloric refrigerants. We used the full-potential APW+lo method and treated the random order of P(Si) atoms in the ZrNiAl-type structure in a virtual-crystal approximation. A non-monotonic behavior of the alloy magnetization as a function of x was obtained, in qualitative agreement with experiment, and explained in terms of the spin-polarized densities of states.  相似文献   

11.
The time-differential perturbed angular correlations technique (TDPAC) has been employed for measuring the parameters of hyperfine interactions in earlier known RAl3 compounds, synthesized at high pressure (8 GPa) and high temperature, where R = La, Ce, Sm, Gd, Tb, Dy, Ho, Er, Yb and Lu. The 111Cd(111In) radioactive atom was used as a probe nucleus. The X-ray method has revealed that with the increase in the atomic number of a rare-earth element R, the obtained RAl3 high-pressure phases crystallize, respectively, into orthorhombic, hexagonal and cubic structures. It has been found that in the compounds containing R=La, Ce, Sm and Gd, a deviation from earlier known structural types and the formation of new ones is observed, which is associated with the change of the stoichiometric composition of the said compounds. The results of the PAC measurements have confirmed the deviation from the predetermined stoichiometric composition 1R:3Al for the compounds LaAl3, CeAl3, SmAl3 and GdAl3 and have verified the RAl3 stoichiometric structure for the other high-pressure phases obtained in this work.  相似文献   

12.
Parameters of the electric quadrupole interaction for the first excited state (E=89.7 keV) of 99Ru nuclei for a number of the cubic Laves phase compounds Ce1−xLaxRu2, synthesized at high pressure, were determined by the perturbed angular γγ-correlation method. Compounds were synthesized at 8 GPa. It was revealed that the decrease of the average valence of a rare earth ion, caused by the substitution of La for Ce, results in the monotonous decrease of the quadrupole frequency νQ from 43.3 MHz for CeRu2 to 33.1 MHz for LaRu2.  相似文献   

13.
We have carried out X-ray absorption measurements with its magnetic circular dichroism (MCD) of perpendicular magnetic films of DyxCo100−x (15?x?33) at Dy M4,5 and Co L2,3 absorption edges to investigate electronic and spin states of the Dy 4f and Co 3d states, respectively. The replacement of major spin between Dy 4f and Co3d is clearly observed in the spectra between 20?x?25. The expected values of the orbital angular moment ∣〈Lz〉∣ of Dy 4f were estimated to be 1.4-0.8 μB while that of Co 3d was estimated to be around 0.2 μB.  相似文献   

14.
For the Nd0.1La0.9Fe11.5Al1.5 compound, the fine structure of the magnetic transition from the ferromagnetic (FM) to the antiferromagnetic (AFM) states has been studied carefully by means of magnetization (M) and heat capacity (Cp) measurements. Although a single phase with the cubic NaZn13-type structure (Fm3c) has been proved by the room temperature X-ray diffraction pattern, the phase transition has been clearly found to be a stepwise process in M(T) and Cp(T) curves under proper fields. Due to the strong competition between the FM order and AFM order, the characteristic is especially evident under low fields, weakens gradually with the increasing applied field and finally vanishes when the field is higher than 2 T. This multi-step magnetic transition results from the inhomogeneity of the sample, probably due to the inhomogeneous distribution of Nd atoms.  相似文献   

15.
The structures and magnetocaloric effects of (Gd1−xTbx)Co2 (x=0, 0.25, 0.4, 0.5, 0.6, 0.7, 0.8, and 1) pseudobinary compounds were investigated by X-ray powder diffraction and magnetic properties measurement. The results show that the Tc of the alloy is near room temperature when X=0.6. The magnetic entropy changes of the compounds increase from 1.7 to 3.6 J/kg K with increasing the content of Tb under an applied field up to 2 T. All the compounds exhibit second order magnetic change. As a result, the values of their ΔSM are lower than that of some large magnetocaloric effect materials.  相似文献   

16.
We report X-ray absorption near edge structures (XANES) study of CeAl2 thin films of various thicknesses, 40-120 nm, at Al K- and Ce L3-edges. The threshold of the absorption features at the Al K-edge shifts to the higher photon energy side as film thickness decreases, implying a decreased in Al p-orbital charges. On the other hand, from Ce L3-edge spectra, we observed a decrease in the 5d4f occupancy as the surface-to-bulk ratio increases. The valence of Ce in these thin films, as revealed by the Ce L3-edge spectral results, is mainly trivalent. From a more detailed analysis we found a small amount of Ce4+ contribution, which increases with decreasing film thickness. Our results indicate that the surface-to-bulk ratio is the key factor which affects the electronic structure of CeAl2 thin films. The above observations also suggest that charge transfer from Al to Ce is associated with the decrease of the film thickness.  相似文献   

17.
Magneto-structural correlations in Pr0.15Gd0.85Mn2Ge2 have been studied by synchrotron diffraction in the temperature range between 11 and 300 K. This compound crystallizes in the ThCr2Si2-type structure (space group ). The unit cell parameters a and c were determined by Rietveld refinements as a function of temperature. Anomalies in the temperature dependence of the unit cell parameters a and c, the c/a ratio and the unit cell volume V at about 240 and 140 K, which is close to the magnetic phase transition temperatures, indicate a pronounced magneto-structural correlation. Spontaneous volume change and linear magnetostrictions are derived as a function of temperature.  相似文献   

18.
Magnetic moment of Ni in GdNi single crystal was studied through the soft X-ray absorption spectra (XAS) and the magnetic circular dichroism (MCD) at the Ni L2,3-edges and the Gd M4,5-edges. Our experiment revealed for the first time that the Ni 3d band is not filled completely even at the content of 50 at.% of Gd and the Ni does retain a total magnetic moment coupling antiparallel to that of Gd. This result implied that the Ni in GdNi holds an intrinsic magnetic moment even at 50 at.% of Gd and contradicts the well-known charge transfer model. Further by employing the magneto-optical sum rule, the spin and orbital angular magnetic moment were evaluated and discussed.  相似文献   

19.
We have investigated electronic and magnetic properties of hexagonal, tetragonal, and orthorhombic GdSi2, using the full-potential linearized augmented plane-wave method based on general gradient approximation for exchange-correlation potential. Antiferromagnetic (AFM) states of the GdSi2 are found from total energy calculations to be energetically more stable, compared to ferromagnetic (FM) states in all of the considered present crystal structures. It is in good agreement with an experimental result. The calculated magnetic moments of valence electrons of the Gd atoms are 0.16, 0.14, and 0.14 μB for hexagonal, tetragonal, and orthorhombic crystal structures in AFM states, respectively, and the Si atoms are coupled antiferromagnetically to the Gd atoms irrespective of crystal structure even though their magnitudes are negligible.  相似文献   

20.
The structure and magnetic properties of Nd1−xHoxMn2Ge2 (0.0≤x≤1.0) germanides were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) techniques and AC magnetic susceptibility measurements. All compounds crystallize in the ThCr2Si2-type structure with the space group I4/mmm. Substitution of Ho for Nd leads to a linear decrease in the lattice constants and the unit cell volume, and the magnetic interactions in the Mn sublattice cross over from a ferromagnetic character to an antiferromagnetic one. A typical SmMn2Ge2-like behavior is observed for x=0.6 and 0.8. The results are collected in a phase diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号