首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutron stars are efficient accelerators for bringing charges up to relativistic energies. We show that if positive ions are accelerated to approximately 1 PeV near the surface of a young neutron star (t(age) less than or nearly 10(5) yr), protons interacting with the star's radiation field produce beamed mu neutrinos with energies of approximately 50 TeV that could produce the brightest neutrino sources at these energies yet proposed. These neutrinos would be coincident with the radio beam, so that, if the star is detected as a radio pulsar, the neutrino beam will sweep the Earth; the star would be a "neutrino pulsar." Looking for nu(mu) emission from young neutron stars will provide a valuable probe of the energetics of the neutron star magnetosphere.  相似文献   

2.
Neutrino reactions play an important role at various stages of core-collapse supernova. During infall, neutrinos are produced by electron capture mainly on nuclei and contribute significantly to the cooling of the collapsing core. After core bounce the nascent neutron star cools by neutrino emission. It is a major goal to observe such neutrinos from a future supernova by earthbound detectors and to establish their spectra. Recently it has been shown that the spectrum of electron neutrinos from the early neutrino burst is significantly altered if inelastic neutrino-nucleus scattering is considered in supernova simulations. Finally spallation reactions induced by neutrinos when passing through the outer burning shells can produce certain nuclides in what is called neutrino nucleosynthesis.  相似文献   

3.
A protoneutron star is formed immediately after the gravitational collapse of the core of a massive star. At birth, the hot and high density matter in such a star contains a large number of neutrinos trapped during collapse. Trapped neutrinos generally inhibit the presence of exotic matter — hyperons, a kaon condensate, or quarks. However, as the neutrinos diffuse out in about 10–15 s, the threshold for the appearance of strangeness is reduced; hence, the composition and the structure of the star can change significantly. The effect of exotic, negatively-charged, strangeness-bearing components is always to soften the equation of state, and the possibility exists that the star collapses to a black hole at this time. This could explain why no neutron star has yet been seen in the remnant of supernova SN1987A, even though one certainly existed when neutrinos were detected on Feb. 23, 1987. With new generation neutrino detectors it is feasible to test different theoretical scenarios observationally.  相似文献   

4.
5.
《Physics letters. A》2006,351(6):373-378
We discuss the propagation of neutrino wave packets in a Lense–Thirring metric using a gravitational phase approach. We show that the neutrino oscillation length is altered by gravitational corrections and that neutrinos are subject to helicity flip induced by stellar rotation. For the case of a rapidly rotating neutron star, we show that absolute neutrino masses can be derived, in principle, from rotational contributions to the mass-induced energy shift, without recourse to mass generation models presently discussed in the literature.  相似文献   

6.
A novel scenario is proposed for the origin of cosmological γ-ray bursts relating them with the induced collapse of an isolated neutron star under the action of a primordial black hole inside it. A mechanism is pointed out for black hole capturing into bounded orbits in a contracting protostellar cloud (which further evolves to a neutron star), and it is shown that this mechanism is most efficient in the pregalactic epoch. The qualitative results of neutrino transfer calculations are presented; these neutrinos originate from the quark phase transition in the nucleon matter which takes place in the accretion flow in the interior of the star. The neutrinos and antineutrinos escaping from a dense nucleon matter are degenerate and annihilate in the immediate vicinity of the star surface where an inverse temperature layer in the outstreaming electron-positron wind is produced. This layer acts as a natural barrier against baryon pollution and gives rise to a very high (≈ 103) value of the Lorentz factor in the expanding plasma, in agreement with the observed energy and duration of the process. This makes it possible to explain the main properties of the γ-ray bursts. We also consider other important features of this scenario, including the predominantly extragalactic origin of the bursts, the apparent absence of the cosmological time dilation, the excess drop in the number of bursts—luminosity dependence for z>0.7, and the unlikely corrllation between the burst and the gravitational wave pulse.  相似文献   

7.
徐东莲 《物理》2019,48(9):593-599
2017年8月17日,LIGO/Virgo首次探测到了双中子星并合事件的引力波信号,随后多波段的跟进观测获得了GW170817事件的多波段“全息”图像并确认源头在40 Mpc外的NGC4993星系,但颇为遗憾的是(尽管与理论预期符合)当时全球运行中的中微子探测器都没有探测到与GW170817相关联的中微子。普遍认为,热中微子在双星引力潮汐撕裂绕行阶段就会产生,在并合事件后的十几毫秒内达到峰值;若并合中心产物为伽马射线暴或者稳定的磁星,还会在并合的即刻至数天内产生超高能中微子。因此,中微子信号不仅可以辅助研究并合后的产物环境,还可以在天文尺度上研究中微子的基本性质和寻找粒子物理标准模型之外的新物理。即使只探测到一个热中微子事件,也可以获得热中微子的能谱标度信息和诊断并合后十几毫秒内星体本身和周围环境的物理参数。另外,因为引力波以光速传播,通过热中微子信号相对引力波信号的时延,可限制中微子的绝对质量。若探测到延迟的高能中微子信号,除了可以清楚地证明双中子星并合的中心产物是磁星,还可以研究并合产物附近的磁场环境和宇宙射线加速机制。  相似文献   

8.
The influence of trapped neutrinos on the proto-neutron star is studied in the framework of relativistic mean-field theory. The results show that trapped neutrinos increase proton fraction and make the equation of ๏๏ state of neutron star matter softer when neglecting hyperonic freedom, while suppress the appearance of hyperons and make the equation of state stiffer when including hyperons in the protoneutron star. The maximum mass, compared with cold neutron star which is in beta equilibrium, decreases by 0.06_{M_{\odot}} for non-strange protoneutron star while increases by 0.21_{M_{\odot}} for protoneutron star with hyperons when the relative number of trapped neutrino is 0.4.  相似文献   

9.
杨芳  申虹 《中国物理 C》2008,32(7):536-542
We study the hadron-quark phase transition in the interior of neutron stars, and examine the influence of the nuclear equation of state on the phase transition and neutron star properties. The relativistic mean field theory with several parameter sets is used to construct the nuclear equation of state, while the  相似文献   

10.
11.
The Sun is a plasma diffuser that selectively moves light elements like H and He and the lighter isotopes of each element to its surface. The Sun formed on the collapsed core of a supernova (SN) and is composed mostly of elements made near the SN core (Fe, O, Ni, Si, and S), like the rocky planets and ordinary meteorites. Neutron emission from the central neutron star triggers a series of reactions that generate solar luminosity, solar neutrinos, solar mass fractionation, and an outpouring of hydrogen in the solar wind. Mass fractionation seems to have operated in the parent star and likely occurs in other stars as well. The text was submitted by the authors in English.  相似文献   

12.
If baryons decay, eventually neutron stars will reach their lower mass limit and become unstable to rapid expansion. During this expansion, the nuclear material will beta decay, producing a burst of neutrinos. If these neutrinos carry off enough energy, the star will settle down into a white-dwarf configuration, possibly with an ejected shell of material. But if less than 99.9% of the excess energy is carried off, the entire star will be dispersed in the explosion.  相似文献   

13.
The flux profile of the neutrinos emitted from a collapsing spherical object, as seen by a remote observer is studied. The model of the collapsing star consists of the Friedmann dust interior matched onto the Schwarzschild exterior. It is assumed that the neutrino emission occurs from an interior shell in a very short time interval. It is found that the nature of the flux profile falls into four distinct categories depending on the progress of collapse. Interesting features such as bursts, discontinuities, decay, etc are observed when the collapse has sufficiently progressed.  相似文献   

14.
    
A novel scenario is proposed for the origin of cosmological γ-ray bursts relating them with the induced collapse of an isolated neutron star under the action of a primordial black hole inside it. A mechanism is pointed out for black hole capturing into bounded orbits in a contracting protostellar cloud (which further evolves to a neutron star), and it is shown that this mechanism is most efficient in the pregalactic epoch. The qualitative results of neutrino transfer calculations are presented; these neutrinos originate from the quark phase transition in the nucleon matter which takes place in the accretion flow in the interior of the star. The neutrinos and antineutrinos escaping from a dense nucleon matter are degenerate and annihilate in the immediate vicinity of the star surface where an inverse temperature layer in the outstreaming electron-positron wind is produced. This layer acts as a natural barrier against baryon pollution and gives rise to a very high (≈ 103) value of the Lorentz factor in the expanding plasma, in agreement with the observed energy and duration of the process. This makes it possible to explain the main properties of the γ-ray bursts. We also consider other important features of this scenario, including the predominantly extragalactic origin of the bursts, the apparent absence of the cosmological time dilation, the excess drop in the number of bursts—luminosity dependence for z>0.7, and the unlikely corrllation between the burst and the gravitational wave pulse. Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 41, No. 1, pp. 13–27, January, 1998.  相似文献   

15.
We study CP-violation effects when neutrinos are present in dense matter, such as outside the proto-neutron star formed in a core-collapse supernova. Using general arguments based on the Standard Model, we confirm that there are no CP-violating effects at the tree level on the electron neutrino and anti-neutrino fluxes in a core-collapse supernova. On the other hand significant effects can be obtained for muon and tau neutrinos even at the tree level. We show that CP-violating effects can be present in the supernova electron (anti-)neutrino fluxes as well, if muon and tau neutrinos have different fluxes at the neutrinosphere. Such differences could arise due to physics beyond the Standard Model, such as the presence of flavor-changing interactions.  相似文献   

16.
Properties of hybrid stars in an extended MIT bag model   总被引:1,自引:0,他引:1  
The properties of hybrid stars are investigated in the framework of the relativistic mean field theory (RMFT) and an MIT bag model with density-dependent bag constant to describe the hadron phase (HP) and quark phase (QP), respectively. We find that the density-dependent B(p) decreases with baryon density p; this decrement makes the strange quark matter become more energetically favorable than ever, which makes the threshold densities of the hadron-quark phase transition lower than those of the original bag constant case. In this case, the hyperon degrees of freedom can not be considered. As a result, the equations of state of a star in the mixed phase (MP) become softer whereas those in the QP become stiffer, and the radii of the star obviously decrease. This indicates that the extended MIT bag model is more suitable to describe hybrid stars with small radii.  相似文献   

17.
We propose that the solar neutrino puzzle may be partially due to emission of Goldstone neutrinos resulting from a spontaneous breakdown of supersymmetry. An oscillation of the Goldstone neutrinos and a photon-neutrino coupling also result.The author is grateful to professor Jay Burns for this valuable comments in this work.  相似文献   

18.
We consider the effects of torsion on the emission of neutrinos in a hot dense neutron medium and we explore the consequences for the case of SN1987A neutrinos.  相似文献   

19.
We study the correlation between CP violation in neutrino oscillations and leptogenesis in the framework with two heavy Majorana neutrinos and three light neutrinos. Among three unremovable CP phases, a heavy Majorana phase contributes to leptogenesis. We show how the heavy Majorana phase contributes to Jarlskog determinant J as well as neutrinoless double beta decay by identifying a low energy CP-violating phase which signals the CP-violating phase for leptogenesis. For some specific cases of the Dirac mass term of neutrinos, a direct relation between lepton number asymmetry and J is obtained. We also study the effect coming from the phases which are not related to leptogenesis.  相似文献   

20.
Core-collapse supernovae produce a hot protoneutron star that cools emitting huge amounts of neutrinos of all flavors. The interaction of these neutrinos with the outer layers of the protoneutron star produces an outflow of matter whose composition is determined by the luminosities and energies of the emitted neutrinos and antineutrinos. The presence of light nuclei like deuterons and tritons can have a big impact in the average energies of the emitted antineutrinos and consequently in the neutron-richness of the ejected matter. Recent hydrodynamical models show that the ejected matter is in fact proton-rich and constitutes the site of the νp-process where antineutrino absorption reactions catalyze the nucleosynthesis of nuclei with A>64.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号