首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
稀土离子(Er3+)可与荧光石墨烯量子点(GQDs)表面的含氧基团发生配位,在Er3+介导下形成高配位数的GQDs/Er3+配合物,引起GQDs聚集而使其荧光减弱.凝血酶(Tb)中的氮和氧等原子可与Er3+发生配位作用,从而与GQDs竞争结合Er3+,减弱了GQDs与Er3+的作用而使其荧光恢复.通过检测GQDs的荧光即可实现对Tb活性的高灵敏分析,构建了基于Er3+介导GQDs荧光开关的Tb传感方法,采用透射电镜、原子力显微镜、红外吸收光谱以及荧光光谱等对传感机理进行了研究.本方法对Tb的检出限低至0.049 nmol/L,其它蛋白质对Tb检测无明显干扰,实际样品中Tb加标回收率为98.0%~105.3%,相对标准偏差为0.6%~4.2%.  相似文献   

2.
碳基量子点荧光传感器在环境检测中的应用研究   总被引:1,自引:0,他引:1  
由于优越的光学性能、良好的水溶性及生物相容性,碳基量子点在荧光传感器方面的应用引起了越来越多人的关注,特别是对金属离子卓越的检测性能使其广泛应用于环境检测。为了帮助更好地了解到碳基量子点的应用,本文对碳量子点、石墨烯量子点、氧化石墨烯量子点的合成及其在环境检测中的应用进行总结,并对碳基量子点荧光传感器的应用进行展望。  相似文献   

3.
王菡  王晓敏 《物理化学学报》2016,32(5):1267-1272
石墨烯量子点凭借其良好的水溶性、低生物毒性等特点,被不断尝试应用于生物成像领域,但其有限的荧光性能限制了其进一步应用。为改善石墨烯量子点的荧光性能以及进一步揭示石墨烯量子点的制备机理,本文对聚乙烯亚胺(PEI)功能化石墨烯量子点的制备条件进行了探索,讨论了不同反应时间、制备温度以及混悬液pH值对其荧光性能的影响。测试结果显示,当混悬液pH值为12时,在反应釜中经过200 ℃高温反应20 h,所制备的功能化石墨烯量子点能取得良好的紫外吸收峰和荧光性能,同时达到较高的量子产量。  相似文献   

4.
利用水热法制备了ZnO-1-丙胺基-3-甲基咪唑氯离子液体功能化的石墨烯量子点溶液,通过紫外-可见吸收光谱、红外吸收光谱和透射电镜对其进行了表征.通过研究各种因素对ZnO-离子液体功能化的石墨烯量子点的荧光发射光谱的影响,发现Cr2O72-对ZnO-离子液体功能化的石墨烯量子点有荧光猝灭现象.实验结果表明,在优化的实验条件下,pH=5.0,Cr(Ⅵ)浓度为1.0×10-7~1.6×10-6 mol·L-1时,Cr(Ⅵ)对ZnO-离子液体功能化的石墨烯量子点的荧光猝灭呈线性,其线性方程为F/F0=0.969 5-0.008 4c,R=0.998 8,检出限为7.6×10-2μmol·L-1.  相似文献   

5.
谢文菁  傅英懿  马红  张沫  范楼珍 《化学学报》2012,70(20):2169-2172
利用电化学方法在碱性条件下电解石墨棒, 通过常温下水合肼还原, 得到5~10 nm的荧光石墨烯量子点(Graphene Quantum Dots, GQDs). 通过透射电子显微镜(TEM)、原子力显微镜(AFM)对所制备的GQDs进行形貌表征, GQDs的粒子大小均一, 为单层石墨烯. 通过傅里叶变换红外光谱(FTIR)、荧光光谱(PL)、紫外可见吸收光谱(UV-vis)、X 射线衍射光谱(XRD)对所制备的GQDs进行性质测定, 发现GQDs可以发出黄色荧光, 量子产率为14%, 毒性低、具有良好的水溶性、荧光稳定性和生物兼容性, 可顺利进入细胞, 在肿瘤细胞的成像研究方面具有广泛的应用前景.  相似文献   

6.
7.
8.
Citric acid,histidine,pentaethylenehexamine and boric acid were mixed and pyrolyzed to prepare histidine and pentaethylenehexamine-functionalized and boron-doped graphene quantum dots (HPB-GQD). The resulting HPB-GQD was composed of graphene sheets with size of 4.17±0.12 nm, and also with rich functional groups at the edges of graphene sheets. The fluorescence emission of HPB-GQD depended on the excitation wavelength. Ultraviolet excitation at 375 nm produced the strongest blue fluorescence emission. The fluorescence quantum yield was 87.4%, which was significantly better than that of traditional GQD,and single histidine, pentaethylenehexamine or boric acid-functionalized GQD,showing that introduction of histidine, pentaethylenehexamine and boron can significantly improve the luminescence efficiency. Based on the fluorescence quenching by the interaction between curcumin and HPB-GQD, a method for fluorescence determination of curcumin was established. The linear range and detection limit were 0.05-20.0 μmol/L and 0.017 μmol/L,respectively. The proposed method has been successfully applied to the fluorescence detection of curcumin in Chinese herbal medicine. The results were basically consistent with those of liquud chromatographymass spectrometry(LC-MS)and the recoveries were in the range of 96.0%-104.0%. © 2023 The Authors.  相似文献   

9.
石墨烯量子点荧光探针对碱性磷酸酶活性的高效检测   总被引:1,自引:0,他引:1  
基于苯醌类物质静态猝灭石墨烯量子点(GQDs)荧光的特性, 构建了一种利用GQDs荧光探针实时、 高效检测碱性磷酸酶(ALP)活性的新方法. 过氧化氢在辣根过氧化物酶催化作用下产生羟基自由基并将邻苯二酚氧化成邻苯醌, 导致GQDs的荧光猝灭. ALP催化抗坏血酸-2-磷酸反应生成抗坏血酸, 具有较强还原性的抗坏血酸能清除溶液中的过氧化氢和羟基自由基, 抑制邻苯醌的产生, 使GQDs的荧光猝灭效果减弱. 随着ALP活性的增大, GQDs在440 nm处的荧光强度不断增强, 由此建立了一种高效检测ALP活性的新方法. 在最佳实验条件下, 该GQDs荧光探针对ALP活性的检出限为0.084 U/L. 将此方法成功用于人血清中ALP活性的检测, 为与ALP相关疾病的诊断与治疗提供了理论基础.  相似文献   

10.
作为一种短肽,谷胱甘肽含有活性巯基,参与细胞内多种反应,因此,检测细胞中的谷胱甘肽具有重要意义。本研究合成了表面富含氨基的石墨烯量子点(GQDs),可与铜离子(Cu2+)发生配位反应,聚集诱导荧光猝灭;而Cu2+和谷胱甘肽具有更强的配位能力,促使Cu2+从GQDs上解离下来,进而导致GQDs荧光的恢复。在pH 6.8的BR缓冲溶液中,谷胱甘肽可在20 min内将Cu2+(250μmol/L)猝灭的GQDs (1μg/mL)的荧光恢复,且荧光信号的恢复程度与谷胱甘肽的浓度在20~500μmol/L范围内呈良好的线性关系,检出限为3.4μmol/L。本方法利用Cu2+的开-关作用提高了选择性,可用于细胞裂解液中谷胱甘肽的检测。  相似文献   

11.
Biological imaging is an essential means of disease diagnosis. However, semiconductor quantum dots that are used in bioimaging applications comprise toxic metal elements that are nonbiodegradable, causing serious environmental problems. Herein, we developed a novel ecofriendly solvothermal method that uses ethanol as a solvent and doping with chlorine atoms to prepare highly fluorescent graphene quantum dots (GQDs) from seaweed. The GQDs doped with chlorine atoms exhibit high-intensity white fluorescence. Thus, their preliminary application in bioimaging has been confirmed. In addition, clear cell imaging could be performed at an excitation wavelength of 633 nm.  相似文献   

12.
High-photoluminescence (PL) graphene quantum dots (GQDs) were synthesized by a simple one-pot hydrothermal process, then separated by dialysis bags of different molecular weights. Four separated GQDs of varying sizes were obtained and displayed different PL intensities. With the decreasing size of separated GQDs, the intensity of the emission peak becomes much stronger. Finally, the GQDs of the smallest size revealed the most energetic PL intensity in four separated GQDs. The PL energy of all the separated GQDs shifted slightly, supported by density functional theory calculations.  相似文献   

13.
14.
15.
朱守俊  张俊虎  宋玉彬  张国彦  张皓  杨柏 《化学学报》2012,70(22):2311-2315
近年来, 由于聚合物点(PDs)具有良好的荧光性质和光收集能力, 受到了人们广泛的关注, 应用在生物成像和检测等领域. 然而, 目前报道的聚合物点大多数是指共轭聚合物经过组装、固定形成的, 因此聚合物点保持着形成之前的共轭聚合物的相关性质, 且具有更好的稳定性和进一步功能化的能力. 本文中我们研究的聚合物点是指从非共轭线性聚合物为原料而制备的聚合物点, 这类聚合物包括聚环氧乙烯, 多糖等. 聚合物点不仅包含使其具有荧光的碳化中心, 还具有外围的聚合物链结构. 因此, 可以拓展应用聚合物点的聚合物特性. 我们利用PDs的荧光中心和外围的聚合物链双功能性质, 详细研究了基于PDs制备功能性纳米复合材料体系. 首先, 我们原位制备了聚乙烯醇/PDs纳米复合膜材料(PDs是直接通过聚乙烯醇可控碳化而产生的). 复合材料不仅保持了PDs的荧光特性, 还保持了聚乙烯醇易加工的特性, 如可以制备成纳米复合膜材料, PDs含量可以根据需要调控: 0, 20%, 40%, 60%, 80%, 100%. 纳米复合膜材料在不同激发光下具有多颜色发光性质. 进一步的, 我们验证了PDs水溶液可以和很多其他水溶性聚合物, 石墨烯量子点或半导体量子点实现共混, 从而制备双功能性纳米复合材料.  相似文献   

16.
Aluminum is a kind of metal that we often encounter. It can also be absorbed by the human body invisibly and will affect our bodies to a certain extent, e.g., by causing symptoms associated with Alzheimer’s disease. Therefore, the detection of aluminum is particularly important. The methods to detect metal ions include precipitation methods and electrochemical methods, which are cumbersome and costly. Fluorescence detection is a fast and sensitive method with a low cost and non-toxicity. Traditional fluorescent nanomaterials have a high cost, high toxicity, and cause harm to the human body. Graphene quantum dots are a new type of fluorescent nanomaterials with a low cost and non-toxicity that can compensate for the defects of traditional fluorescent nanomaterials. In this paper, c-GQDs and o-GQDs with good performance were prepared by a bottom-up hydrothermal method using o-phenylenediamine as a precursor and citric acid or boric acid as modulators. They have very good optical properties: o-GQDs exhibit orange fluorescence under UV irradiation, while c-GQDs exhibits cyan fluorescence. Then, different metal ions were used for ion detection, and it was found that Al3+ had a good quenching effect on the fluorescence of the o-GQDs. The reason for this phenomenon may be related to the strong binding of Al3+ ions to the N and O functional groups of the o-GQDs and the rapid chelation kinetics. During the chelation process, the separation of o-GQDs’ photoexcited electron hole pairs leads to their rapid electron transfer to Al3+, in turn leading to the occurrence of a fluorescence-quenching phenomenon. In addition, there was a good linear relationship between the concentration of the Al3+ ions and the fluorescence intensity, and the correlation coefficient of the linear regression equation was 0.9937. This illustrates the potential for the wide application of GQDs in sensing systems, while also demonstrating that Al3+ sensors can be used to detect Al3+ ions.  相似文献   

17.
Graphene quantum dots (GQDs) have attracted considerable interest due to their unique physicochemical properties and various applications. For the first time it is shown that GQDs surface‐functionalized with hydrocarbon chains (i.e., amphiphilic GQDs) self‐assemble into unilamellar spherical vesicles in aqueous solution. The amphiphilic GQD vesicles exhibit multicolor luminescence that can be readily exploited for membrane studies by fluorescence spectroscopy and microscopy. The GQD vesicles were used for microscopic analysis of membrane interactions and disruption by the peptide beta‐amyloid.  相似文献   

18.
Graphene quantum dot (GQD)–organic hybrid compounds (GQD‐ 2 b – e ) were prepared by introducing 3,4,5‐tri(hexadecyloxy)benzyl groups (C16) and linear chains terminated with a 2‐ureido‐4‐[1H]‐pyrimidinone (UPy) moiety onto the periphery of GQD‐ 1 . GQD‐ 2 b – e formed supramolecular assemblies through hydrogen bonding between the UPy units. GPC analysis showed that GQDs with high loadings of the UPy group formed larger assemblies, and this trend was confirmed by DOSY and viscosity measurements. AFM images showed the polymeric network structures of GQD‐ 2 e on mica with flat structures (ca. 1.1 nm in height), but no such structures were observed in GQD‐ 2 a , which only carries the C16 group. GQD‐ 2 c and GQD‐ 2 d formed organogels in n‐decanol, and the gelation properties can be altered by replacing the alkyl chains in the UPy group with ethylene glycol chains (GQD‐ 3 ). GQD can thus be used as a platform for supramolecular polymers and organogelators by suitable chemical functionalization.  相似文献   

19.
Chemical modification of graphene quantum dots (GQDs) can influence their physical and chemical properties; hence, the investigation of the effect of organic functional groups on GQDs is of importance for developing GQD–organic hybrid materials. Three peripherally functionalised GQDs having a third‐generation dendritic wedge (GQD‐ 2 ), long alkyl chains (GQD‐ 3 ) and a polyhedral oligomeric silsesquioxane group (GQD‐ 4 ) were prepared by the CuI‐catalysed Huisgen cycloaddition reaction of GQD‐ 1 with organic azides. Cyclic voltammetry indicated that reduction occurred on the surfaces of GQD‐ 1 – 4 and on the five‐membered imide rings at the periphery, and this suggested that the functional groups distort the periphery by steric interactions between neighbouring functional groups. The HOMO–LUMO bandgaps of GQD‐ 1 – 4 were estimated to be approximately 2 eV, and their low‐lying LUMO levels (<?3.9 eV) were lower than that of phenyl‐C61‐butyric acid methyl ester, an n‐type organic semiconductor. The solubility of GQD‐ 1 – 4 in organic solvents depends on the functional groups present. The functional groups likely cover the surfaces and periphery of the GQDs, and thus increase their affinity for solvent and avoid precipitation. Similar to GQD‐ 2 , both GQD‐ 3 and GQD‐ 4 emitted white light upon excitation at 360 nm. Size‐exclusion chromatography demonstrated that white‐light emission originates from the coexistence of differently sized GQDs that have different photoluminescence emission wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号