首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
制备金-多孔碳-离子液体(AuNPs-多孔碳-IL)纳米复合材料,用以修饰玻碳(GC)电极,制得AuNPs-多孔碳-IL/GC传感器,对食品中的亚硝酸盐进行检测。在最优条件下,NaNO_2浓度在2.00×10~(-9)~8.00×10~(-8)mol/L和8.00×10-7~8.00×10~(-4)mol/L时,与峰电流呈良好的线性关系,线性方程分别为:I=22.48122c+1.05555,(R~2=0.998);I=0.05322c+3.81848(R2=0.999)。检出限为8.86×10~(-9)mol/L。对实际样品中的NaNO_2进行检测,得到样品平均回收率在95.5%~108.9%范围内。  相似文献   

2.
利用电化学还原氧化石墨烯(GO)的方法将石墨烯(rGO)固定在电极表面上,然后电沉积氢氧化铜和氢氧化镍复合物,构成石墨烯/金属氢氧化物复合纳米材料修饰的玻碳电极(GCE),并通过电聚合天青Ⅰ将辣根过氧化酶(HRP)固定在GCE/rGO/Cu(OH)_2-Ni(OH)_2表面,制得GCE/rGO/Cu(OH)_2-Ni(OH)_2/HRP-PA。对石墨烯/金属氢氧化物复合纳米材料进行了SEM和能谱表征。通过电化学阻抗法和循环伏安法对传感器的制备过程和电化学性能进行了研究,并进一步分别对过氧化氢叔丁基(BHP)及过氧化氢异丙苯(CHP)进行了分析测定。该传感器对BHP和CHP具有良好的检测效果,在2.0×10~(-5)~9.2×10~(-4)mol/L范围内响应电流与BHP浓度呈良好的线性关系,检出限为9.9×10~(-6)mol/L;在3.0×10~(-6)~1.0×10~(-4)mol/L范围内响应电流与CHP浓度呈良好的线性关系,检出限为6.9×10~(-7)mol/L。  相似文献   

3.
利用柠檬酸钠还原氯金酸制得金纳米粒子(AuNPs),基于AuNPs/Nafion与Ru(bpy)_3~(2+)之间的静电引力,制备了Ru(bpy)_3~(2+)/AuNPs/Nafion电化学发光传感器。采用循环伏安法和电化学发光法对该传感器进行了表征,结果表明该传感器具有良好的稳定性和重现性,可实现对己烯雌酚的检测。在pH=7.0的0.1mol/L磷酸盐缓冲溶液(PBS,含0.05mol/L三正丙胺)中,当己烯雌酚与修饰电极作用15min时,电化学发光强度减少值与己烯雌酚浓度的负对数在1.0×10-10~5.0×10-7 mol/L范围内呈良好的线性关系,检出限为6.0×10-11 mol/L。对1.0×10-8 mol/L己烯雌酚平行测定11次,相对标准偏差为2.7%。测定己烯雌酚实际样品的加标回收率在98.0%~104.5%之间。  相似文献   

4.
利用反相微乳液法制备了Ru(bpy)2+3-SiO2复合纳米粒子(RuSiO2NPs),采用Nafion/多壁碳纳米管(MWCNTs)复合膜技术,实现了对RuSiO2NPs有效而稳定的固定,从而制备了电化学发光传感器,在0.1mol/L磷酸盐缓冲溶液(PBS,pH=7.4,含50mmol/L三正丙胺)介质中,实现了对双酚A(BPA)的免标记检测。在优化实验条件下,电化学发光强度减少值与BPA浓度的负对数在1.0×10-11~1.0×10-7 mol/L范围内呈良好的线性关系,相关系数R=0.9978,检出限为8.0×10-12 mol/L。对1.0×10-9 mol/L BPA平行测定11次,其相对标准偏差为2.7%。实验结果表明该传感器具有良好的稳定性和重现性。  相似文献   

5.
利用反相微乳液法制备了壳聚糖-Ru(bpy)2+3-SiO2复合纳米粒子,采用Nafion/MCNT复合膜技术实现了对复合纳米粒子有效而稳定的固定,从而制备了电化学发光传感器,实现了对尿酸的检测。在0.1 mol/L PBS缓冲溶液(pH 7.4)中,当尿酸与修饰电极作用15 min时,电化学发光强度与尿酸浓度(1.0×10-10~1.0×10-5 mol/L)的负对数呈良好的线性关系,线性方程为IECL=-709.52-202.74lgC,相关系数R=0.9936,检出限为6.0×10-12 mol/L。传感器表现出良好的重现性与稳定性,对1.0×10-8 mol/L尿酸平行测定11次,发光强度的相对标准偏差为2.9%,测定尿酸实际样品的加标回收率在98.5%~103.5%之间。  相似文献   

6.
通过电化学沉积将壳聚糖、葡萄糖氧化酶和碳纳米管固定到镀铂金电极上,制备了一种新型葡萄糖生物传感器.探讨了铂的电沉积时间、壳聚糖化学沉积时间、缓冲溶液pH和工作电位等对该牛物传感器的影响.实验结果表明,该生物传感器线性范围为1×10~(-6)1.2×10~(-2)mol/L,相关系数为0.9974,检测限为5.0×10~(-7)mol/L,响应时间≤8 s;血清中的尿酸、抗坏血酸等对葡萄糖的测定无干扰.利用该生物传感器测定了人血清中的葡萄糖,回收率在97%~105%之间.该生物传感器线性范围较宽,灵敏度高,响应迅速,抗干扰能力强,有望成为一种可推广的新型葡萄糖检测器.  相似文献   

7.
该文以高比表面积的泡沫镍电极(Ni foam)为基础,通过电沉积碳纳米管(CNTs)制备了CNTs/Ni foam。然后在十六烷基三甲基溴化铵(CTAB)的辅助下,通过一步法电沉积纳米金(AuNPs)将辣根过氧化物酶(HRP)固定到电极表面,制备了HRP-AuNPs/CNTs/Ni foam直接电化学酶传感器。并采用SEM、能谱(EDS)和电化学方法对该电极进行了表征,优化了测试电位和pH值,将该传感器对过氧化氢及2种有机过氧化物进行了检测。结果表明,该传感器性能良好,对过氧化氢、过氧化氢异丙苯、2-过氧化丁酮具有良好的催化检测性能,其检出限分别为1.2×10~(-7)、4.5×10~(-7)、2.5×10~(-7) mol/L。  相似文献   

8.
通过Hummer法进一步还原合成还原石墨烯(RGO),Shifft碱反应合成新型二茂铁巯基化合物(FcSH)。利用还原石墨烯吸附性将石墨烯修饰在玻碳电极(GCE)上,在石墨烯表面电沉积金纳米粒子(AuNPs),通过自组装制备还原石墨烯和二茂铁巯基修饰电化学传感器(FcSH/AuNPs/RGO/GCE),该电化学传感器具有大的比表面积和富电子性能。实验显示,在0.01 mol/L HCl中,富集时间为180s,Cu~(2+)浓度在1.0×10~(-12)~1.0×10~(-11)mol/L与1.0×10~(-11)~1.0×10~(-10)mol/L范围内与方波伏安峰电流分别呈现良好的线性关系,检出限为0.94×10~(-12)mol/L。该电化学传感器对Cu~(2+)的检测表现出较好的选择性、高的稳定性和灵敏性,可用于环境中痕量Cu~(2+)的测定。  相似文献   

9.
制备了碳量子点/聚中性红膜修饰电极。采用了透射电子显微镜和荧光光谱对制备的碳量子点进行表征。利用循环伏安法、示差脉冲伏安法考察了鸟嘌呤和腺嘌呤在修饰电极上的电化学行为。结果表明,在0.1 mol/L磷酸盐缓冲溶液中,该修饰电极对鸟嘌呤和腺嘌呤的氧化具有明显的电催化作用。在最佳条件下,鸟嘌呤和腺嘌呤的示差脉冲伏安响应和其浓度分别在1.0×10~(-6)~2.0×10~(-4)mol/L和5.0×10~(-6)~2.0×10~(-4)mol/L范围中呈良好的线性关系,检测限分别为3.0×10~(-7)mol/L和4.8×10~(-7)mol/L(S/N=3)。该修饰电极能够用于复杂样品中鸟嘌呤和腺嘌呤的检测及实际样品分析。  相似文献   

10.
以镍镉合金为基底,将壳聚糖滴涂在碳纳米管修饰的超薄碳糊电极表面制成电化学传感器(CTSCNTs-UTCPE),利用循环伏安法(CV)、半微分伏安法研究硝基酚异构体在该电极上的电化学行为。考察了底液种类、酸碱度、扫描速度、起始电位和富集时间对检测结果的影响。与镍铬合金电极、超薄碳糊电极(UTCPE)和碳纳米管修饰超薄碳糊电极(CNTs-UTCPE)相比,由于壳聚糖和碳纳米管的协同效应,硝基酚异构体在p H 5.72的B-R中氧化电流较高。在最佳条件下,传感器对邻、间、对硝基酚的检测范围分别为4.0×10-7~8.0×10-5mol/L,4.0×10-7~8.0×10-5mol/L,8.0×10-7~8.0×10-5mol/L;检出限(S/N=3)分别为2.3×10-7,2.9×10-7,6.7×10-7mol/L。该传感器显示出良好的稳定性和抗干扰性能,可实现对人工水样中硝基酚异构体的同时检测。  相似文献   

11.
Carboxyl graphene modified CuxO/Cu electrode was fabricated. The bare copper electrode was firstly anodic polarized in 1.0 mol/L NaOH solution in order to get CuxO nanoparticles, then the carboxyl graphene (CG) was electrodeposited on the CuxO/Cu electrode by cyclic potential sweeping. The electrocatalytic oxidation behaviors of calcium folinate (CF) at the graphene modified CuxO/Cu electrode were investigated by cyclic voltammetry. A positive scan polarization reverse catalytic voltammetry was used to obtain the pure catalytic oxidation current. The graphene modified CuxO/Cu electrode was served as the electrochemical sensor of CF, a highly sensitivity of 22.0 μA·(μmol/μL)-1cm-2 was achieved, and the current response was linear with increasing CF concentration in the range of 2.0×10-7 mol/L to 2.0×10-5 mol/L, which crossed three orders of magnitude, and the detection limit was found 7.6×10-8 mol/L (S/N=3). In addition, the proposed sensor was successfully applied in determination of CF in drug sample.  相似文献   

12.
A novel nanocrystalline TiO2 (nano-TiO2) and Nafion composite film modified glassy carbon electrode has been developed for the determination of nitric oxide (NO) radical in an aqueous solution. This modified electrode can be employed as a NO sensor with a low detection limit, fast response, high sensitivity and selectivity. Two apparent anodic peaks were observed at 0.67 and 0.95 V at the nano-TiO2 modified glassy carbon electrode by differential pulse voltammetry (DPV). After further modification with a thin film of Nafion, which was capable of preventing some anionic interference such as nitrite and ascorbic acid, only one peak appeared and the peak current enhanced greatly. The chronocoulometric experimental results showed NO was oxidized by one-electron transfer reaction at the composite film modified electrode. The amperometric responses increased linearly with the concentrations of NO ranging from 3.6×10−7 mol/L to 5.4×10−5 mol/L. The detection limit was estimated to be 5.4×10−8 mol/L. In this sensor system, the modification film provides complete selectivity for NO over nitrite anions (NO2).  相似文献   

13.
A vermiculite modified carbon paste electrode (VMCPE) was employed for the in situ preconcentration of traces of Hg(II) and Ag(I) via an ion-exchange route. Heavy metal ions were accumulated in Britton-Robinson (BR) buffer pH 7 for Hg(II) and pH 6 for Ag(I), and afterwards reduced at –0.7 V vs. Ag/AgCl in the separate measurement solution (BR buffer pH 5 + 0.05 mol/L NaNO3) prior to the anodic stripping square-wave voltammetric (ASSWV) detection. For Hg(II) ions, at 15 min accumulation, a linear range from 1.0 × 10–7 to 8.0 × 10–6 mol/L was obtained, with a 5.7 × 10–8 mol/L limit of detection. The VMCPE response was linear for Ag(I) ions in the concentration range from 2.0 × 10–7 to 8.0 × 10–6 mol/L, at 10 min accumulation with a corresponding limit of detection of 6.3 × 10–8 mol/L. The relative standard deviation of the analytical procedure including accumulation from a 5 × 10–7 mol/L solution of Hg (15 min) or Ag(I) (10 min), electrolysis, ASSWV detection, regeneration and activation of the VMCPE, was 4% (n = 6). The optimisation of the parameters for the application of the VMCPE in combination with ASSWV detection is presented and discussed. Received: 10 July 1997 / Revised: 31 October 1997 / Accepted: 3 November 1997  相似文献   

14.
Gold nanoparticles (nano Au)/titanium dioxide (TiO2) hollow microsphere membranes were prepared on the carbon paste electrode (CPE) for enhancing the sensitivity of DNA hybridization detection. The immobilization of nano Au and TiO2 microsphere was investigated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization events were monitored with EIS using [Fe(CN)6]3−/4− as indicator. The sequence-specific DNA of the 35S promoter from cauliflower mosaic virus (CaMV35S) gene was detected with this DNA electrochemical sensor. The dynamic detection range was from 1.0×10−12 to 1.0×10−8 mol/L DNA and a detection limit of 2.3×10−13 mol/L could be obtained. The polymerase chain reaction (PCR) amplification of the terminator of nopaline synthase (NOS) gene from the real sample of a kind of transgenic soybean was also satisfactorily detected. Supported by the National Natural Science Foundation of China (Grant Nos. 20635020 and 20375020), Doctoral Foundation of the Ministry of Education of China (Grant No. 20060426001) and Natural Science Foundation of Qingdao City (Grant No. 04-2-JZP-8)  相似文献   

15.
A novel amperometric choline biosensor has been fabricated with choline oxidase (ChOx) immobilized by the sol-gel method on the surface of multi-walled carbon nanotubes (MWCNT) modified platinum electrode to improve the sensitivity and the anti-interferential property of the sensor. By analyzing the electrocatalytic activity of the modified electrode by MWCNT, it was found that MWCNT could not only improve the current response to H2O2 but also decrease the electrocatalytic potential. The effects of experimental variables such as the buffer solutions, pH and the amount of loading enzyme were investigated for the optimum analytical performance. This sensor shows sensitive determination of choline with a linear range from 5.0 × 10−6 to 1.0 × 10−4 mol/L when the operating pH and potential are 7.2 and 0.15 V, respectively. The detection limit of choline was 5.0 × 10−7 mol/L. Selectivity for choline was 9.48 μA·(mmol/L)−1. The biosensor exhibits excellent anti-interferential property and good stability, retaining 85% of its original current value even after a month. It has been applied to the determination of choline in human serum. Translated from Chinese Journal of Analytical Chemistry, 2006, 34(7): 910–914 (in Chinese)  相似文献   

16.
An 1-(pyridylazo)-2-naphthol modified glassy carbon electrode has been investigated as sensor for the measurement of trace levels of Cd2+. Cd2+ is deposited on the surface of a PAN modified glassy carbon electrode at –1.10 V (vs. SCE) via forming Cd2+–PAN and subsequent reduction at the electrode. In the following step, Cd-PAN is oxidized, and voltammograms are recorded by scanning the potential in a positive direction. Calibration plots were found to be linear in the range 2 × 10–8 mol/L to 8 × 10–7 mol/L. The detection limit was 5 × 10–10 mol/L, and the coefficient of variation, determined on one single electrode at a concentration of 5 × 10–7 mol/L, was calculated to be 3.2% (n = 5). Using this new kind of modified electrode, trace levels of Cd(II) in water samples were determined; the average recovery was calculated to be 98.78%. Received: 17 August 2000 / Revised: 19 December 2000 / Accepted: 27 December 2000  相似文献   

17.
In this work, an enzyme biosensor based on the immobilization of horseradish peroxidase (HRP) on SiO2/BSA/Au/thionine/nafion-modified gold electrode was fabricated successfully. Firstly, nafion was dropped on the surface of the gold electrode to form a nafion film followed by chemisorption of thionine (Thi) as an electron mediator via the ion-exchange interaction between the Thi and nafion. Subsequently, the SiO2/BSA/Au composite nanoparticles were assembled onto Thi film through the covalent bounding with the amino groups of Thi. Finally, HRP was immobilized on the SiO2/BSA/Au composite nanoparticles due to the covalent conjugation to construct an enzyme biosensor. The surface topographies of the SiO2/BSA/Au composite nanoparticles were investigated by using scanning electronic microscopy. The stepwise self-assemble procedure of the biosensor was further characterized by means of cyclic voltammetry and chronoamperometry. The enzyme biosensor showed high sensitivity, good stability and selectivity, a wide linear response to hydrogen peroxide (H2O2) in the range of 8.0 × 10-6 ∼ 3.72 × 10-3 mol/L, with a detection limit of 2.0 × 10-6 mol/L. The Michaelies-Menten constant KMapp K_M^{app} value was estimated to be 2.3 mM.  相似文献   

18.
《Analytical letters》2012,45(4):661-676
Abstract

A novel amperometric sensor of hydrogen peroxide was constructed. Hemoglobin (Hb) was successfully immobilized on nanometer‐sized SiO2, which was supported by chitosan. Chitosan was acted as dispersant. The determination of hydrogen peroxide was performed in the presence of an electron mediator hydroquinone. Hb immobilized on the SiO2/chitosan composite film displayed excellent electrocatalytical activity to the reduction of H2O2. The linear range of detection towards H2O2 was from 6.25×10?7 to 1.63×10?4mol/L with a detection limit of 1.8×10?7mol/L (S/N=3). The apparent Michaelis‐Menten constant (K app M) was found to be 0.75mmol/L.  相似文献   

19.
In the presence of carbonate and uranine, the chemiluminescent intensity from the reaction of luminol with hydrogen peroxide was dramatically enhanced in a basic medium. Based on this fact and coupled with the technique of flow-injection analysis, a highly sensitive method was developed for the determination of carbonate with a wide linear range. The method provided the determination of carbonate with a wide linear range of 1.0 × 10−10–5.0 × 10−6 mol L−1 and a low detection limit (S/N = 3) of carbonate of 1.2 × 10−11 mol L−1. The average relative standard deviation for 1.0 × 10−9–9.0 × 10−7 mol L−1 of carbonate was 3.7% (n = 11). Combined with the wet oxidation of potassium persulfate, the method was applied to the simultaneous determination of total inorganic carbon (TIC) and total organic carbon (TOC) in water. The linear ranges for TIC and TOC were 1.2 × 10−6–6.0 × 10−2 mg L−1 and 0.08–30 mg L−1 carbon, respectively. Recoveries of 97.4–106.4% for TIC and 96.0–98.5% for TOC were obtained by adding 5 or 50 mg L−1 of carbon to the water samples. The relative standard deviations (RSDs) were 2.6–4.8% for TIC and 4.6–6.6% for TOC (n = 5). The mechanism of the chemiluminescent reaction was also explored and a reasonable explanation about chemical energy transfer from luminol to uranine was proposed. Figure Chemiluminescence profiles in batch system. 1, Injection of 100 μL of K2CO3 into 1.0 mL luminol-1.0 mL H2O2 solution; 2-3 and 4-5, Injection in sequence of 100 μL of K2CO3 and 100 μL of uranine into 1.0 ml luminol-1.0 mL H2O2 solution; Cluminol = 1.0 × 10−7 mol/L, CH2O2 = 1.0 × 10−5 mol/L, Curanine = 1.0 × 10−5 mol/L, CK2CO3 = 1.0 × 10−7 mol/L except for 4-5 where CK2CO3 = 1.0 × 10−4 mol/L  相似文献   

20.
研究使用电化学沉积法在丝网印刷碳电极表面制备了还原氧化石墨烯和金纳米颗粒,构建了一种用于新冠病毒检测的石墨烯电化学传感器。通过扫描电子显微镜(SEM)和相应的电化学方法对纳米复合材料在电极表面的成功修饰进行了表征分析。并采用差分脉冲伏安法对传感器的性能进行检测,实验构建的电化学传感器具有良好的灵敏度,该传感器检线性范围为10-10-10-6mol/L,具有良好的重复性和特异性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号