首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于离子迁移谱的爆炸物探测仪多采用放射性电离源,发展非放射性电离源一直是该技术的研究热点。本研究基于电晕放电原理设计了一种新型负电晕放电电离源结构,结合自行研制的离子迁移谱仪,应用于痕量爆炸物的快速、高灵敏检测。单向气流模式下,对此电离源的气流、放电电压等运行参数进行了系统优化,得到最佳实验条件为:电晕放电电离源结构的电极环孔直径为3 mm,针-环距离为2 mm,放电电压为2400 V,漂气流速为1200 mL/min。在此条件下,避免了放电副产物氮氧化物和臭氧等引发的一系列复杂反应,得到了单一的反应试剂离子O-2(H2O)n。将其应用于爆炸物,如2,4,6-三硝基甲苯(TNT)、硝酸铵(AN)、硝化甘油( NG)、太安( PETN)、黑索金( RDX)等的高灵敏快速直接检测,对TNT的检测限达到200 pg/μL。结果表明,此负电晕放电电离源具有灵敏度高、结构简单、无辐射性、反应试剂离子单一等优点,在爆炸物快速高灵敏检测、公共安全保障等方面具有广阔的应用前景。  相似文献   

2.
1 引言 复杂基体样品中痕量三硝基甲苯(TNT)的快速检测是爆炸物检测研究的热点之一.TNT检测方法主要有传感器、光谱、色谱、离子淌度谱、质谱等多种.  相似文献   

3.
王恩琪  李佩芳 《色谱》1988,6(6):370-372
硝化甘油(NG)、二硝基甲苯(2,6-DNT和2,4-DNT)、三硝基甲苯(α-TNT)及二甲基二苯脲(C)是火药中最常见的组分。这些组分可用气相色谱法(GC)进行分离测定,但因NG的热稳定性较差,结果的精确度较差。对上述组分较有效的分析方法是高效液相色谱法(HPLC),因此法一般是在室温下进行,可避免NG等爆炸性组分的热分解。 HPLC分析火药组分在国内外早有报道。但国内做的工作不多。近年来我院开始应用HPLC分析火炸药组分。  相似文献   

4.
实验基于10.6 eV的真空紫外灯设计了大气压下的丙酮增强负离子光电离源,结合自行研制的飞行时间质谱仪,用于痕量爆炸物的快速检测。在丙酮增强负离子光电离源中,丙酮分子吸收10.6 eV的光子,通过单光子电离释放出一个电子,光电子与大气中的O2、CO2等反应,最终生成了以CO!3为主的试剂离子。该电离源可在不经样品前处理的情况下,实现对常见爆炸物吉纳(DINA)、特屈儿(Tetryl)、2,4,6-三硝基甲苯(TNT)、黑索金(RDX)的高灵敏度检测,其中TNT的检出限达到2 pg。基于真空紫外灯的丙酮增强负离子光电离源结构简单,灵敏度高,具有较为广泛的应用前景。  相似文献   

5.
电感耦合等离子体质谱法测定花生中34种元素   总被引:3,自引:0,他引:3  
建立了微波消解-碰撞/反应池(ORS)电感耦合等离子体质谱仪(ICP-MS)同时测定花生中的Na、Mg、Ca、Fe、Se、Mo和稀土元素等34种元素的分析方法。样品经微波消解后,在线加入内标元素45Sc、72Ge、103Rh、115In和209Bi消除基体效应,应用碰撞反应池技术,以4.5 mL/min流速的氦气作为碰撞反应气,有效消除多原子离子产生的质谱干扰。各元素的检出限为0.0003~17.37ng/mL,相对标准偏差(RSD)低于2.9%;标准物质的测定值均在标准值范围内,结果令人满意。该方法可用于花生中多种元素的同时测定。  相似文献   

6.
两种微波等离子体炬质谱测定水中铅的对比研究   总被引:1,自引:0,他引:1  
建立了一种新型的能够灵敏分析水中痕量铅的质谱方法,以微波等离子体炬(MPT)为离子源,可无需样品预处理而直接分析水样。样品经雾化和去溶后由MPT的中心管道引入等离子体,离子由国产的四极杆质谱仪(Q-MS)检测,得到铅的MPT特征质谱。定量结果表明,该方法的检出限为20 ng/L,线性范围为200~1 000 ng/L,相对标准偏差(RSD)为5.3%;所得定量指标优于相同条件下商用的线性离子阱质谱(LTQ-MS)测试结果,且四极杆质谱仪上所得的铅离子特征质谱信号更简单、易归属,无需复杂的多级串联质谱加以确认。这种MPT可与国产质谱仪器相结合发展成为一种低成本的现场检测铅的质谱仪器,在环境监控、饮用水检验等方面具有一定的应用价值。  相似文献   

7.
建立了一种测定烟草中痕量砷的电感耦合等离子体质谱(ICP-MS)分析方法。样品用硝酸-过氧化氢经微波消解前处理后,采用ICP-MS动态反应池模式,以氧气为反应气,通过测定75 As16 O+对砷进行定量。砷的质量浓度在20μg·L-1范围内呈线性,方法的检出限(3S/N)为39ng·L-1。方法用于烟叶样品分析,加标回收率在95.3%~105%之间,测定值的相对标准偏差(n=7)小于5.0%。  相似文献   

8.
微波等离子体炬发射光谱法测定镉的研究   总被引:3,自引:0,他引:3  
本文提出了一种灵敏测定痕量镉的微波等离子体炬发射光谱法(MPTAES)。探讨了微波等离子体炬(MPT)光源的一些基本特性.采用电热蒸发微量进样装置进样,详细考察了各种实验参数对测定镉的影响.在228.8nm处测定镉,检出限为0.28ng/mL.实际样品的测定结果是令人满意的.  相似文献   

9.
建立了氨基酸及多肽的电喷雾离子迁移谱检测方法.采用自制的电喷雾离子迁移谱装置,在室温条件下以甲醇为溶剂,空气为漂移气体,流速为1000 mL/min,电喷液流速为2 mL/min,测试了甘氨酸、胱氨酸、组氨酸、精氨酸4种氨基酸及缓激肽片段(1~7)和P物质2种多肽的离子迁移谱,计算出上述化合物的约化迁移率.离子迁移谱图反映出化合物的结构信息,具有指纹谱特征.此装置在1 min的检测时间内对P物质的检测灵敏度达到855 ng/mL.结果表明,电喷雾离子迁移谱可用于氨基酸及多肽类化合物的现场快速鉴定.  相似文献   

10.
直接电离质谱系统在现场快速检测中的应用日益广泛,主要用于爆炸物、毒品、食品添加剂等的检测。然而,直接电离质谱系统中质谱信号波动大且同一浓度样品峰强呈现对数正态分布,严重影响了检出限附近低浓度样品的检测准确性。该研究将乙酰水杨酸(115个样品)作为爆炸物模拟物,利用介质阻挡放电离子源与质谱系统,研究了基于机器学习的直接电离质谱数据预处理和分类算法,以提高低浓度样品的检测准确率。对两种浓度为1 ng/mL的常见爆炸物样本(三硝基甲苯和硝酸铵分别为110、90个)及空白对照样本(366个)开展了应用实验。结果表明,与传统提取离子流方法和高斯混合模型方法相比,采用随机森林算法可将F_score从0.74、0.89提升至0.96,显著提高了检测准确率,且单个样本数据分析时间远少于0.1 s,满足实时检测需求。  相似文献   

11.
代渐雄  段忆翔 《分析化学》2016,(11):1686-1691
离子迁移谱仪的性能受到多种因素的影响,如漂移管电场强度离子门脉冲宽度、离子源工作条件、漂移管尺寸、离子门加工工艺和屏蔽网透过率等。在实际应用中需要对漂移管电场强度和离子门脉冲宽度进行调整以平衡灵敏度和分辨率。本研究详细研究了漂移管电场强度和离子门脉冲宽度对微波诱导等离子体离子迁移谱( MIPI-IMS)分辨率和灵敏度的影响。实验结果表明,存在一个最佳电场强度值使得分辨率达到最大,而且不同离子门脉冲宽度对应的最佳电场强度值不同;增大电场强度和离子门脉冲宽度有利于灵敏度的提升。与其它离子流较弱的离子源相比,离子流较大的微波诱导等离子体离子源在实际应用中对离子门脉冲宽度和漂移管电场强度有更多的选择。此研究结果有助于MIPI-IMS仪器性能的提升。将异丙醇用于测试MIPI-IMS的性能,结果表明,MIPI-IMS在保持较低检出限(7.7×10-11, V/V)的同时,分辨率可以达到66。  相似文献   

12.
建立了微波消解-微波等离子体炬原子发射光谱(MPT-AES)法测定啤酒中微量元素。考察了微波前向功率、工作气流量、载气流量等参数,确定了MPT-AES法测定各元素的最佳实验条件。在该条件下铜、锌、铁、锰、硒、锶的检出限分别为7ng.mL-1、46ng.mL-1、13ng.mL-1、8ng.mL-1、1.2ng.mL-1、5.6ng.mL-1。相对标准偏差(RSD)均在0.9%~4.8%之间,线性范围分别为0.1~100μg.mL-1、0.5~100μg.mL-1、0.5~100μg.mL-1、0.1~100μg.mL-1、0.01~10μg.mL-1、0.05~100μg.mL-1,加标回收率均在96%~110%之间。  相似文献   

13.
MPT-AES法同时测定航空润滑油中铁、银和镍   总被引:1,自引:0,他引:1  
用微波等离子体炬原子发射光谱法(MPT-AES)同时测定未使用过的航空润滑油中铁、银和镍的方法。详细考察了微波功率、载气流量、工作气流量、氧屏蔽气压力等实验参数对铁、银和镍发射强度的影响,并进行了系统优化。测得铁、银和镍的检出限分别为21.94ng/mL0、.36ng/mL9、.82ng/mL,线性范围分别为0.1~100μg/mL、0.001~8μg/mL、0.05~8μg/mL,各元素测定结果的相对标准偏差均小于3.95%,回收率在93.1%~107.4%之间。  相似文献   

14.
文章通过基体预消除法测定了高纯硼酸中痕量组分硫酸根、磷酸氢根、钠、钾、镁和钙杂质组分。在特制的密闭反应容器中硼酸首先与甲醇生成挥发性的硼酸三甲酯,硼酸三甲酯与丙三醇反应生成不易挥发的多聚硼酸酯,同时释放出甲醇,实现硼酸基体的消除。离子色谱法(IC)测定,各组分的检测限(3σ)分别为硫酸根100 ng/g、磷酸根200 ng/g、锂15 ng/g、钠20 ng/g、钾30 ng/g、镁50 ng/g和钙离子50 ng/g。  相似文献   

15.
提出并建立了气相色谱-微波等离子体炬(MPT)原子发射光谱和离子化双检测器系统. 以Ar气作为等离子体工作气体, O2气作为等离子体屏蔽气体, 同时获得了被测组分的原子发射和离子化信息, 并对不同种类有机化合物的相对响应系数及检出限进行了测定.  相似文献   

16.
六亚甲基三过氧化二胺( Hexamethylene triperoxide diamine, HMTD)是一种新型有机过氧化爆炸物,由于原料易得、制备方法简单,常被用于恐怖袭击和犯罪活动中。本实验基于非放射性电离源真空紫外灯( VUV)发展了一种试剂分子辅助灯电离正离子迁移谱技术,通过优化筛选试剂分子,最终选择丙酮作为HMTD定量检测的试剂分子。利用质谱对丙酮的反应试剂离子和HMTD的产物离子进行了离子归属,确定反应试剂离子为丙酮二聚体离子 m/z 117[( CH3)2 CO ]2 H+, HMTD 的产物离子为其质子化的分子离子m/z 209[ HMTD+H]+。在迁移管和热解析温度120℃的条件下,利用HMTD最大信号强度和第10 s的信号强度对其标准样品进行定量检测,线性范围分别为5~50 ng/μL和5~100 ng/μL,检出限分别可达0.2和0.3 ng/μL。化妆品如香水等常常干扰和抑制离子迁移谱测量,发展在香水基质中HMTD的现场快速筛查和检测方法具有现实意义。将这两种定量方法应用于3种不同品牌香水样品中HMTD的定量检测,对比发现利用HMTD第10 s的信号强度进行定量具有较好的回收率和准确性,该方法适用于复杂基质中HMTD的准确快速定量检测。  相似文献   

17.
制备了聚(丙烯酰胺-乙二醇二甲基丙烯酸酯)(Poly(AA-EGDMA))整体柱,采用红外(IR)光谱、扫描电子显微镜(SEM)对其结构和形貌进行了表征。基于此,建立了Poly(AA-EGDMA)整体柱毛细管微萃取(CME)-等离子体质谱(ICP-MS)联用检测生物样品中痕量重金属离子的分析方法。对影响CME的诸多条件,如样品溶液的pH值、上样体积、上样流速、解吸剂浓度及体积、解吸剂流速以及共存离子的干扰等进行了详细的考察。在优化的实验条件下,方法对Cd2+和Pb2+的检出限分别为4ng·L-1和36ng·L-1,相对标准偏差(c=0.2μg·L-1,n=7)分别为4.7%和3.9%。该整体柱对Cd2+和Pb2+的吸附容量分别为46.7μg·m-1和130μg·m-1。将所建立的方法用于尿样中痕量重金属离子Cd2+、Pb2+的测定,加标回收率分别为99%和100%。  相似文献   

18.
电感耦合等离子体质谱法测定花生中稀土元素   总被引:1,自引:0,他引:1  
本文建立了微波消解-八极杆碰撞/反应池(ORS)电感耦合等离子体质谱法(ICP-MS)同时测定花生仁中的La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu 14种稀土元素的分析方法。样品经微波消解后,在线加入103 Rh内标元素有效消除了非质谱干扰,选用八极杆碰撞/反应池技术有效地消除了质谱干扰。氦碰撞反应气流速为4.5mL/min时背景等效浓度(BEC)最低。结果表明,选择体积比4∶1的HNO3-H2O2体系微波消解充分,14种稀土元素的检出限小于0.0011ng/mL,相对标准偏差(RSD)低于2.60%。该方法具有简单、快速、准确的特点,可作为花生中稀土元素同时测定的可靠方法。  相似文献   

19.
高场非对称波形离子迁移谱(FAIMS)是一种芯片级高灵敏度快速分析检测技术,其在大气压环境下工作的特点使之受环境影响明显,其中气体的湿度是显著影响因素,湿度的变化可引起迁移区离子反应机理以及迁移过程的变化。该文研究了干燥条件下痕量硫化氢的定量检测方法,确定了DF=33%时的检测线性范围与回归方程。利用PTFE管渗透作用,设定水浴温度为40~90℃,考察了不同含量水分对FAIMS检测硫化氢的影响。通过考察不同湿度下硫化氢的FAIMS特征谱图以及特征离子峰,研究了掺杂水分对于硫化氢谱峰峰值、补偿电压以及检测分辨率的影响。结果表明,FAIMS对于硫化氢的检测谱图清晰可见,能够准确定位其特征离子峰。随着气体中水分增多,不同分离电场下的产物离子峰峰值增大,说明湿度增大在一定程度上提高了灵敏度,DF=35%时的检出限为1.43×10~(-3) mg/m~3。  相似文献   

20.
中科院安徽光机所成功研制的一种用于痕量爆炸物检测的新型离子迁移谱快速检测仪,通过了由国家反恐办、公安部、防化研究院、安徽省安全厅、解放军电子工程学院等单位组成的专家组验收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号