首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
采用弱配体柠檬酸钠修饰的金纳米花为介导材料,考察了其对人喉癌Hep-2细胞的NIR热疗作用,结果表明,这种金纳米花材料具有良好的NIR光热转换性能,可有效抑制Hep-2细胞增殖.  相似文献   

2.
合成了一种甘露醇引发的星型共聚物甘露醇-聚乳酸-聚乙三醇1000维生素E琥珀酸酯(M-PLATPGS).利用纳米沉淀法制备载紫杉醇M-PLA-TPGS纳米颗粒.纳米颗粒近似球形,粒径分布较窄.对载药纳米颗粒进行粒径、表面电荷、载药量、包封率和体外药物释放的表征,结果表明,体外药物释放呈双相释放模型,M-PLA-TPGS纳米颗粒在前列腺癌PC-3细胞中的摄取水平要高于PLGA和PLA-TPGS纳米颗粒.载紫杉醇M-PLA-TPGS纳米颗粒对于前列腺癌细胞的的毒性显著高于载紫杉醇PLA-TPGS纳米颗粒和商业制剂Taxol,证明星型M-PLA-TPGS聚合物作为纳米药物载体优于线性PLGA和PLA-TPGS聚合物.  相似文献   

3.
利用高分离度液相色谱-四极杆飞行时间质谱(RRLC-Q-TOF MS)和超高效液相色谱-三重四极杆质谱(UPLC-QQQ MS)定性定量分析了稀有原人参二醇型皂苷Rd, F2, Rg3, CK和Rh2在离体人肠道菌群中的生物转化过程. 并将上述二醇型皂苷与人肠道菌群在体外厌氧, 37 ℃下共温孵育, 采用电喷雾质谱在负离子模式进行检测, 鉴定代谢产物, 监测其含量变化, 拟合代谢路径. 结果表明, 人参皂苷Rd主要被代谢为F2, Rg3, CK, Rh2和PPD; 人参皂苷F2主要被代谢为CK和PPD; 人参皂苷Rg3主要被代谢为Rh2和PPD; 人参皂苷CK和Rh2主要被代谢为PPD. 在离体条件下, 人参皂苷Rd, F2和Rg3会被肠道菌群完全转化为其代谢产物, 而人参皂苷CK和Rh2则不能被肠道菌群完全转化为其代谢产物. 原人参二醇型皂苷在人肠道菌群中的主要转化为脱糖基反应, 单糖苷和苷元是稀有原人参二醇型皂苷在人体内发挥药效的物质基础.  相似文献   

4.
以表面接枝聚乙二醇链的聚酰胺胺树枝状聚合物(PEG-PAMAM)为纳米载体, 在其内部空腔包覆金纳米粒子, 在金纳米粒子表面连接硫辛酸改性的阿霉素(LA-DOX), 从而间接实现了抗癌药物在PEG-PAMAM内的高效负载. 同时, LA-DOX中的酰腙键提供pH响应性, 实现了药物的pH响应性释放. 紫外-可见(UV-Vis)光谱表明, 包覆金纳米粒子的PEG-PAMAM纳米载体对LA-DOX的负载能力显著增强. 体外细胞实验表明, 负载LA-DOX的树枝状聚合物-金纳米粒子复合药物载体具有较强的抗肿瘤能力.  相似文献   

5.
为研究抗肿瘤药物与辅药负载于同一药物载体的作用效果, 首先以壳寡糖和广谱抗肿瘤药物5-氟尿嘧啶(5-Fu)为原料通过化学键合合成氟尿嘧啶-壳寡糖前体, 然后以其为模板通过溶胶-凝胶法制备了同时负载氟尿嘧啶和硒纳米颗粒的壳寡糖微球. 采用透射电子显微镜(TEM)、 Zeta电位仪和红外光谱(IR)对制备的微球进行了表征, 结果表明, 微球粒径为433 nm, 硒纳米颗粒包裹在微球内; 对微球包裹药物进行检测发现, 5-Fu装载率为(8.2±0.3)%, 硒装载率为(7.96±0.34)%; 体外缓释检测和细胞实验结果证实, 微球能够缓慢释放2种药物, 其缓释作用能很好地抑制肝癌细胞SMMC-7721的生长.  相似文献   

6.
通过在包覆了金纳米棒的介孔硅表面修饰生物相容性的透明质酸, 得到了具有肿瘤靶向性的多功能药物载体. 实验结果表明, 透明质酸可以通过酰胺键修饰在介孔硅表面, 所得药物载体可在透明质酸酶作用下实现选择性释放. 该体系在近红外区域具有较高的吸收, 可以在近红外光照射下实现光热转换. 细胞实验结果表明, 该多功能药物载体可以有效靶向CD44过量表达的乳腺癌细胞, 通过CD44介导的内吞富集在肿瘤内部, 结合化学药物治疗和光热治疗, 显示出更高的肿瘤细胞凋亡效率.  相似文献   

7.
在接枝共聚辅助自组装(GISA)制备葡聚糖纳米载体的过程中, 利用丙烯酸单体与卡铂之间的非共价键作用, 使得卡铂参与到葡聚糖纳米载体的形成中, 从而一步实现了卡铂@葡聚糖纳米载体的制备, 并使用肿瘤还原性环境敏感的二硫键来交联纳米载体, 得到了对肿瘤还原环境响应的纳米药物载体. 对纳米药物载体的结构、 粒径及形貌进行表征, 结果显示, 纳米药物载体粒径为(92±0.2) nm, Zeta电位为(-8±0.3) eV. 通过体外药物释放研究发现, 在还原性环境中, 载体可持续72 h释放药物, 最大释放量达80%. 细胞摄取实验表明负载卡铂的纳米药物载体可在4 h内高效地进入细胞核; 其半抑制浓度(IC50)为25.32 μg/mL, 达到和相同浓度游离卡铂相仿的促肿瘤细胞凋亡效果. 此一步法所制备的卡铂@葡聚糖纳米载体具有良好的生物应用前景.  相似文献   

8.
本文采用高压均质法成功将脂溶性药物蟾毒灵(BUF)负载于纳米结构脂质载体(NLC)中,并对其物理化学性质、体外释放性质及体外肿瘤细胞毒性等进行了研究。结果表明,制备获得的蟾毒灵纳米结构脂质载体(BUF-NLC)粒径小、分散度和稳定性好,具有明显的药物缓释作用。MTT实验表明,将BUF负载于NLC后,作用初期对肿瘤细胞的毒性作用低于原药,作用时间延长,毒性与原药达到一致,说明NLC的包裹并未降低蟾毒灵的药效,而是逐步释放出来,这对克服临床应用中蟾毒灵的高毒副作用有非常重要的意义。  相似文献   

9.
利用大肠杆菌表达系统制备了重组融合蛋白antiEGFR/MEL,并用Ni2+层析柱对其进行了纯化.该重组蛋白中抗表皮生长因子受体(antiEGFR)单链抗体(scFv)主要靶向喉癌细胞中的EGFR,而蜂毒肽(MEL)主要抑制肿瘤细胞增殖.采用SDS-PAGE和Westernblot检测证明了antiEGFR/MEL的有效表达.共聚焦显微镜和流式细胞术实验结果表明,antiEGFR/MEL可与Hep-2肿瘤细胞有效结合,而几乎不与EGFR阴性的Jurkat细胞结合.噻唑蓝(MTT)检测结果说明,antiEGFR/MEL可有效抑制人喉癌细胞Hep-2的增殖.以上结果表明,antiEGFR/MEL能够有效靶向EGFR阳性肿瘤细胞,并有效抑制肿瘤细胞增殖,有望应用于EGFR靶向肿瘤治疗.  相似文献   

10.
纳米金的催化性能受载体影响巨大,选择合适的载体或设计金属—载体界面精细结构能显著影响纳米金的催化性能.迄今发现各种载体包括酸、碱金属氧化物、碳材料以及有机聚合物均可作为纳米金的有效载体.相应的各种金催化剂均展现出独特的催化活性与选择性.一个典型的例子是核壳结构的Au/NiO催化剂,基于该催化剂催化异丁烯醛制备异丁烯酸甲酯的化工厂已于2008年开始兴建.金催化剂在AsH_3气体传感器和汞收集器等环境分析方面也开始实际应用.因而,金催化剂的稳定性和使用寿命成为当前关注的焦点问题.目前报道的长寿命金催化剂典型例子有MINTEK催化剂和YD-3烟台催化剂,后者是由α-Fe2O3和La2O3改性氧化铝负载的金催化剂.中国科学院大连化学物理研究所张涛院士和王军虎研究员团队在近期研究中发现高温焙烧条件下Au纳米颗粒与羟基磷灰石(HAP)载体之间会发生金属-载体强相互作用(Strong Metal-Support Interaction简称SMSI)效应.SMSI效应导致载体对Au纳米颗粒形成包裹,可以有效提升Au纳米颗粒的抗烧结性能,但其对活性位的覆盖也会导致催化剂活性的下降.最近,该团队通过向载体HAP中添加Ti O2进行修饰,成功设计开发出Au/HAP-Ti O2催化剂.该催化剂上Au纳米颗粒与HAP接触的一侧被HAP薄层包裹,与Ti O2接触的一侧裸露,呈现出独特的半包裹结构.通过这种纳米尺度的结构设计,该金催化剂经过800°C的高温焙烧后不仅对一系列反应均表现出可观的催化活性和优异的抗烧结性能,且在模拟汽车尾气CO消除反应中表现出优于商业三效催化剂的反应稳定性.该工作为负载型纳米金催化剂的应用,特别是在高温催化反应中的实际应用提供了新途径,因此有望促进负载型金催化剂的实用化乃至商业化进程.  相似文献   

11.
纳米金的催化性能受载体影响巨大,选择合适的载体或设计金属-载体界面精细结构能显著影响纳米金的催化性能.迄今发现各种载体包括酸、碱金属氧化物、碳材料以及有机聚合物均可作为纳米金的有效载体.相应的各种金催化剂均展现出独特的催化活性与选择性.一个典型的例子是核壳结构的Au/NiO催化剂,基于该催化剂催化异丁烯醛制备异丁烯酸甲酯的化工厂己于2008年开始兴建.金催化剂在AsH3气体传感器和汞收集器等环境分析方面也开始实际应用.因而,金催化剂的稳定性和使用寿命成为当前关注的焦点问题.目前报道的长寿命金催化剂典型例子有MINTEK催化剂和YD-3烟台催化剂,后者是由α-Fe2O3和La2O3改性氧化铝负载的金催化剂.中国科学院大连化学物理研究所张涛院士和王军虎研究员团队在近期研究中发现高温焙烧条件下Au纳米颗粒与羟基磷灰石(HAP)载体之间会发生金属-载体强相互作用(Strong Metal-Support Interaction简称SMSI)效应.SMSI效应导致载体对Au纳米颗粒形成包裹,可以有效提升Au纳米颗粒的抗烧结性能,但其对活性位的覆盖也会导致催化剂活性的下降.最近,该团队通过向载体HAP中添加TiO2进行修饰,成功设计开发出Au/HAP-TiO2催化剂.该催化剂上Au纳米颗粒与HAP接触的一侧被HAP薄层包裹,与TiO2接触的一侧裸露,呈现出独特的半包裹结构.通过这种纳米尺度的结构设计,该金催化剂经过8000℃的高温焙烧后不仅对一系列反应均表现出可观的催化活性和优异的抗烧结性能,且在模拟汽车尾气CO消除反应中表现出优于商业三效催化剂的反应稳定性.该工作为负载型纳米金催化剂的应用,特别是在高温催化反应中的实际应用提供了新途径,因此有望促进负载型金催化剂的实用化乃至商业化进程.  相似文献   

12.
基于磷酸化修饰的核/壳硅纳米颗粒药物缓释体研究   总被引:1,自引:0,他引:1  
采用反相微乳液体系中功能化基团同步修饰方法制备了包载抗肿瘤药物平阳霉素(PYM)的磷酸化核/壳硅纳米颗粒(PYM-PO4SiNP), 考察了不同量的磷酸化修饰试剂对PYM-PO4SiNP的影响. 结果表明, 随着磷酸化修饰试剂量的增加, 制备的PYM-PO4SiNP的电位逐渐降低, 其包载的PYM 的释放速率逐渐加快, 但对颗粒的粒径没有明显影响. 本文选择能使药物平稳、缓慢释放的磷酸化修饰试剂用量, 制备了稳定性好、药物缓释时间长的PYM-PO4SiNP, 其载药量和包封率分别为7.2%和37.81%, 通过与CNE-2细胞共培育后, 可以使CNE-2细胞的存活率逐渐下降, 而磷酸化核/壳硅纳米颗粒PO4SiNP载体本身是没有毒性的. 这一研究工作的开展拓宽了核/壳硅纳米颗粒在药物载体领域中的应用.  相似文献   

13.
钟华  许海平  张慧 《分析化学》2014,(4):475-481
纳米胶囊以其独特的优点,在生物医学领域中应用广泛。本工作介绍了一种以金纳米笼为核心,内部装载抗癌药物盐酸阿霉素(DOX),以功能化的DNA纳米材料为外壳并封锁笼口的新型纳米胶囊。这一纳米胶囊集细胞荧光成像、药物靶向投送功能于一体,可通过荧光显微镜识别靶细胞(本实验以人类B淋巴瘤细胞-Ramos细胞为研究对象),同时释放药物作用于靶细胞,诱导靶细胞凋亡。该纳米胶囊的研究为肿瘤细胞的诊断及靶向药物研究领域提供了一定的理论研究依据。  相似文献   

14.
金纳米笼是一类新颖的光热转换材料,具有中空、多孔的特点,可吸收近红外波段(700~1200 nm)的光波,且光热转化效率高,可用于癌症的光热治疗。还具有良好的生物相容性,容易被多种生物分子修饰。本文以银纳米立方体作为模板剂,用氯金酸(HAuCl_4)置换方法制备金纳米笼。用红外热成像仪研究了在波长808nm、功率为200 m W·cm~(-2)的近红外激光辐射下金纳米笼的温度增加和光照效应。还研究了肿瘤细胞的细胞毒性和高热对肿瘤细胞的影响和细胞荧光成像。结果表明,金纳米笼表现出显著的光热作用,可用于光热切除癌细胞。  相似文献   

15.
自噬是真核细胞降解蛋白质的重要途径之一, 在细胞的更新代谢中起重要作用. 肿瘤细胞借助高水平的细胞自噬能够阻断细胞凋亡途径, 降低化疗药物的抗肿瘤效果. 本文通过设计编码有核酸适配体序列(Aptamer)和DNA酶序列(DNAzyme)的多功能DNA纳米花, 利用DNA序列可负载化疗药物阿霉素(Dox)的特性, 实现了对肿瘤细胞特异靶向的药物递送, 并高效沉默肿瘤细胞的自噬相关基因ATG5, 达到增敏抗肿瘤化疗的效果. 通过RT-PCR实验验证合成的DNA纳米花可以有效剪切肿瘤细胞中自噬相关基因ATG5的mRNA; 并通过DNA纳米花的细胞毒性和细胞凋亡实验研究了其对肿瘤细胞系MCF-7的靶向治疗作用, 结果显示该多功能DNA纳米花在增敏抗肿瘤化疗方面具有明显优势.  相似文献   

16.
基于中空多孔微纳米结构的结构特点以及贵金属Au纳米颗粒的催化活化作用,制备了Au纳米颗粒负载的SnO_2双层空心立方体,其CO气敏性能比纯相SnO_2纳米结构显著增强.本文对纯相和Au负载SnO_2双层空心立方体的结构、形貌和气敏性能进行了研究,发现均匀负载的Au纳米颗粒未显著破坏SnO_2双层空心立方纳米结构.CO气敏性能研究结果表明,Au负载SnO_2在最佳工作温度(220℃)下对24.7 mg/m~3(20 ppm)CO气体的灵敏度可达20.9,明显高于纯相SnO_2的灵敏度.Au负载SnO_2对CO气敏特性的显著增强不仅归因于双层空心立方结构的特殊结构优点,还可以归因于负载的Au纳米颗粒的催化活化作用.  相似文献   

17.
近年来,纳米药物递送系统在癌症治疗方面的应用受到广泛关注。 传统的纳米药物递送系统存在生物相容性差、靶向性缺乏、在肿瘤部位释药缓慢等问题。 本文设计制备了一种同源细胞膜(M)包覆、癌细胞还原微环境控制释药的脂质体纳米粒子(命名为P-ss-G/D/Sf@M)来递送肝癌治疗药物索拉非尼(Sf)用于肝癌的靶向治疗。 利用薄膜水化法结合静电吸附及过膜挤压法制备包覆细胞膜的空白(P-ss-G/D@M)及载药(P-ss-G/D/Sf@M)纳米粒子。 P-ss-G/D/Sf@M对Sf的载药量为7.2%,包封率为79.9%。 体外释药结果显示,P-ss-G/D/Sf@M在还原条件下会加快药物的释放,48 h时药物释放量达到65%以上,较非还原条件下释药量提高了25%。 体外细胞实验结果证明,包覆肝癌细胞膜的纳米粒子更易被肝癌细胞摄取,表现了对肝癌细胞的靶向性,同时在肿瘤细胞高浓度谷胱甘肽(GSH)还原环境作用下,纳米粒子中的二硫键断裂,迅速释放药物,与非还原敏感载药纳米粒子相比,显著抑制肝癌细胞生长,提高细胞凋亡率。 因此,本文制备的同源细胞膜包覆的智能释药载体有可能用于今后的癌症治疗中。  相似文献   

18.
通过逐步沉淀反应一锅法制备了一系列不同含量的镁掺杂纳米羟基磷灰石。通过硝酸镁、硝酸钙不同的投料物质的量比调控纳米颗粒的形态和尺寸。通过透射电子显微镜(TEM)、X射线衍射(XRD)等分析手段对镁掺杂纳米羟基磷灰石进行物理化学性能表征,用MTT法评价其体外细胞毒性。研究结果表明:镁掺杂纳米羟基磷灰石呈现束状纳米纤维形态、比表面积大、细胞毒性较低;将其作为载体负载抗癌药物顺铂,具有很好的载药能力,载药量可达54%,该载药纳米颗粒还具备缓释特性(72 h释药量达到41.72%)和很好抑制癌细胞生长的效果。  相似文献   

19.
通过逐步沉淀反应一锅法制备了一系列不同含量的镁掺杂纳米羟基磷灰石。通过硝酸镁、硝酸钙不同的投料物质的量比调控纳米颗粒的形态和尺寸。通过透射电子显微镜(TEM)、X射线衍射(XRD)等分析手段对镁掺杂纳米羟基磷灰石进行物理化学性能表征,用MTT法评价其体外细胞毒性。研究结果表明:镁掺杂纳米羟基磷灰石呈现束状纳米纤维形态、比表面积大、细胞毒性较低;将其作为载体负载抗癌药物顺铂,具有很好的载药能力,载药量可达54%,该载药纳米颗粒还具备缓释特性(72 h释药量达到41.72%)和很好抑制癌细胞生长的效果。  相似文献   

20.
钮洋  刘清海  杨娟  高东亮  秦校军  罗达  张振宇  李彦 《化学学报》2012,70(14):1533-1537
合成了碳纳米管和金纳米颗粒的复合物, 测量了水溶液相中复合物的表面增强拉曼光谱, 结果表明, 碳纳米管的巯基化修饰可以提高碳纳米管与金纳米颗粒复合的效率, 随着金纳米颗粒负载量的增加, 碳纳米管的拉曼信号逐渐增强. 加入己二胺分子可以减小金纳米颗粒之间的距离使表面增强效应更显著, 碳纳米管的拉曼光谱得到进一步的增强. 还可进一步在复合体系中加入对巯基苯胺和罗丹明B等小分子拉曼探针, 利用金纳米颗粒的表面增强效应, 这种多元复合体系有望作为多通道拉曼成像探针材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号