首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
An SMIB model in the power systems,especially that concering the effects of hard limits onbifurcations,chaos and stability is studied.Parameter conditions for bifurcations and chaos in the absence ofhard limits are compared with those in the presence of hard limits.It has been proved that hard limits can affectsystem stability.We find that (1) hard limits can change unstable equilibrium into stable one;(2) hard limits canchange stability of limit cycles induced by Hopf bifurcation;(3) persistence of hard limits can stabilize divergenttrajectory to a stable equilibrium or limit cycle;(4) Hopf bifurcation occurs before SN bifurcation,so the systemcollapse can be controlled before Hopf bifurcation occurs.We also find that suitable limiting values of hard limitscan enlarge the feasibility region.These results are based on theoretical analysis and numerical simulations,such as condition for SNB and Hopf bifurcation,bifurcation diagram,trajectories,Lyapunov exponent,Floquetmultipliers,dimension of attractor and so on.  相似文献   

2.
Turing–Hopf instabilities for reaction-diffusion systems provide spatially inhomogeneous time-periodic patterns of chemical concentrations. In this paper we suggest a way for deriving asymptotic expansions to the limit cycle solutions due to a Hopf bifurcation in two-dimensional reaction systems and we use them to build convenient normal modes for the analysis of Turing instabilities of the limit cycle. They extend the Fourier modes for the steady state in the classical Turing approach, as they include time-periodic fluctuations induced by the limit cycle. Diffusive instabilities can be properly considered because of the non-catastrophic loss of stability that the steady state shows while the limit cycle appears. Moreover, we shall see that instabilities may appear even though the diffusion coefficients are equal. The obtained normal modes suggest that there are two possible ways, one weak and the other strong, in which the limit cycle generates oscillatory Turing instabilities near a Turing–Hopf bifurcation point. In the first case slight oscillations superpose over a dominant steady inhomogeneous pattern. In the second, the unstable modes show an intermittent switching between complementary spatial patterns, producing the effect known as twinkling patterns.  相似文献   

3.
The dynamic local stability of autonomous Hamiltonian, weakly damped, lumped-mass (discrete) systems is reconsidered. For such potential(conservative) systems conditions for the existence of limit cycles are discussed by studying the effect of the damping matrix on the Jacobian eigenvalues. New findings that contradict existing results are presented. Thus, undamped stable symmetric systems with the inclusion of slight damping may experience: (a) a double zero eigenvalue bifurcation, a degenerate Hopf bifurcation and a generic (usual) Hopf bifurcation, and (b) a limit cycle (dynamic) mode of instability prior to the static (divergence) mode of instability (failure of Zieglers kinetic criterion). A variety of numerical examples verified by a nonlinear analysis confirm the validity of the theoretical findings presented herein. Received: January 3, 2003; revised: July 14, 2003 and February 17, 2004  相似文献   

4.
The phase portraits, existence and uniqueness of stable limit cycles and Hopf bifurcations of the well-known Holling–Tanner models for predator–prey interactions are studied. The ranges of the parameters involved are provided under which the unique interior equilibrium can be determined to be a stable (or an unstable) node or focus. The Hopf bifurcations and the existence and uniqueness of stable limit cycles of the models are obtained by computing the Lyapunov number involved. Our results confirm some previous results observed and suggested from the real ecological systems.  相似文献   

5.
Based on the focus quantities and other techniques, the stability properties of equilibria and the limit cycles arising from Hopf bifurcations are investigated for two models of permanent magnet synchronous motors. The first model is of surface-magnet type and can have at most two unstable small limit cycles, which are symmetric with respect to $x$-axis. The other model is of interior-magnet type and can have at most four small limit cycles in two symmetric nests.  相似文献   

6.
It has been reported that a saddle node bifurcation or a blue sky bifurcation causes voltage collapse in an electric power system. In these references, computer simulations are carried out with the voltage magnitude of the generator bus terminal held constant. The generator model described by differential equations of internal flux linkages allows the voltage magnitude of the generator bus terminal to change. By using this model, we have carried out computer simulations of the power system to determine the cause of voltage collapse. It is a cyclic fold bifurcation of the stable limit cycle caused by an unstable limit cycle that leads to the voltage collapse. The involvement of complicated sequences of unstable limit cycles with cyclic fold bifurcations is confirmed, and the voltage collapse which is caused by perturbation for steady states is related to these unstable limit cycles. This is very interesting from the point of view of a nonlinear problem. From the point of view of a power system, the power system will fluctuate in practice even in normal operation, and may sometimes operate beyond the limit of its stability in recent year. It is very important in this situation that we clarify bifurcations of limit cycles on the power system.  相似文献   

7.
One of the general SIRS disease transmission model is considered under the assumptions that the size of the population varies, the incidence rate is nonlinear, and the recovered (removed) class may also be directly reinfected. A combination of analytical and numerical techniques is used to show that (for some parameters) the bifurcations of equilibria can occur and also asymptotically orbitally stable periodic solutions with asymptotic phase can arise through Hopf bifurcations. The investigation is based on computer simulation of bifurcation manifolds in the parameter space. Hopf bifurcations are investigated on the base of center manifold theory by the computation of bifurcation parameters and the approximation of Hopf-bifurcating cycles by bifurcation formulas. This method finds the limit cycle to a good approximation and also its stability. For computer simulations the necessary computer oriented algorithms were developed and encoded by C++. Some results of computer simulations are presented and numerical evidence of existence of bifurcations of equilibria and Hopf bifurcations for the considered model is provided.  相似文献   

8.
The present paper is concerned with a diffusive population model of Logistic type with an instantaneous density-dependent term and two delayed density-dependent terms and subject to the zero-Dirichlet boundary condition. By regarding the delay as the bifurcation parameter and analyzing in detail the associated eigenvalue problem, the local asymptotic stability and the existence of Hopf bifurcation for the sufficiently small positive steady state solution are shown. It is found that under the suitable condition, the positive steady state solution of the model will become ultimately unstable after a single stability switch (or change) at a certain critical value of delay through a Hopf bifurcation. However, under the other condition, the positive steady state solution of the model will become ultimately unstable after multiple stability switches at some certain critical values of delay through Hopf bifurcations. In addition, the direction of the above Hopf bifurcations and the stability of the bifurcating periodic solutions are analyzed by means of the center manifold theory and normal form method for partial functional differential equations. Finally, in order to illustrate the correction of the obtained theoretical results, some numerical simulations are also carried out.  相似文献   

9.
The Bogdanov‐Takens bifurcations of a Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting were studied. In the paper “Diff. Equ. Dyn. Syst. 20(2012), 339‐366,” Gupta et al proved that the Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting has rich dynamics. Some equilibria of codimension 1 and their bifurcations were discussed. In this paper, we find that the model has an equilibrium of codimensions 2 and 3. We also prove analytically that the model undergoes Bogdanov‐Takens bifurcations (cusp cases) of codimensions 2 and 3. Hence, the model can have 2 limit cycles, coexistence of a stable homoclinic loop and an unstable limit cycle, supercritical and subcritical Hopf bifurcations, and homoclinic bifurcation of codimension 1 as the values of parameters vary. Moreover, several numerical simulations are conducted to illustrate the validity of our results.  相似文献   

10.
Hopf bifurcation which produces oscillations is a very important phenomena in the theory and application of dynamical systems. Almost all works available about Hopf bifurcations are related to a non-degenerate focus or center. For the case of a degenerate focus or center, the study of the bifurcations becomes challenge. In this paper, we consider the bifurcation of limit cycles for a quartic near-Hamiltonian system by perturbing a nilpotent center. We take coefficients as parameters, then we can get six limit cycles.  相似文献   

11.
We give here a planar quadratic differential system depending on two parameters, λ, δ. There is a curve in the λ-δ space corresponding to a homoclinic loop bifurcation (HLB). The bifurcation is degenerate at one point of the curve and we get a narrow tongue in which we have two limit cycles. This is the first example of such a bifurcation in planar quadratic differential systems. We propose also a model for the bifurcation diagram of a system with two limit cycles appearing at a singular point from a degenerate Hopf bifurcation, and dying in a degenerate HLB. This model shows a deep duality between degenerate Hopf bifurcations and degenerate HLBs. We give a bound for the maximal number of cycles that can appear in certain simultaneous Hopf and homoclinic loop bifurcations. We also give an example of quadratic system depending on three parameters which has at one place a degenerate Hopf bifurcation of order 3, and at another place a Hopf bifurcation of order 2 together with a HLB. We characterize the planar quadratic systems which are integrable in the neighbourhood of a homoclinic loop.  相似文献   

12.
Functional response of the Holling type II is incorporated into a predator–prey model with predators using hawk‐dove tactics to consider combination effects of nonlinear functional response and individual tactics. By mathematical analysis, it is shown that the model undergoes a sequence of bifurcations including saddle‐node bifurcation, supercritical Hopf bifurcation and homoclinic bifurcation. New phenomena are found that include the bistable coexistence of prey and predators in the form of a stable limit cycle and a stable positive equilibrium, the bistable coexistence of prey and predators in a large stable limit cycle that encloses three positive equilibria and a stable positive equilibrium within the cycle, and the bistable coexistence of two stable limit cycles.  相似文献   

13.
一类时变动力系统的高余维分岔及其控制   总被引:2,自引:0,他引:2  
研究了一类时变动力系统的高余维分岔及其控制问题,首先利用新方法对时变分岔方程的两个方向的分岔转迁和跃迁现象进行分析,分别通过慢变解的线性化近似和量级平衡估计分岔转迁值,然后研究这类时变分岔方程的线性反蚀控制问题,通过分析相应的二维高次自治系统的Hopf分岔,在适当的条件下得到了稳定的动态滞后环,研究揭示出脉冲振动产生的机理是分岔参数随时间周期变化经过定常分岔值时所发生的分岔转迁的滞后和跃迁现象。  相似文献   

14.
To study the nonlinear phenomena of rotors in the sense of bifurcation theory, the mechanical model of a symmetric flexible rotor is investigated which is supported by two identical journal bearings. Two types of journal bearings are considered. While the oil whirl and oil whip oscillations of rotors in plain journal bearings are widely examined, the floating ring bearings cause a quite different vibration behavior with several mode interactions and an area of so-called critical limit cycles leading to a rotor damage. For both types a Hopf bifurcation marks the beginning of the self-excited oscillations in the case of a perfectly balanced rotor. By applying the methods of numerical continuation the occurring limit cycles as well as their stability are determined. The different nonlinear effects with the corresponding bifurcations are explained by describing the global solution behavior of the rotor-bearing systems. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Semi-analytical solutions for cubic autocatalytic reactions are considered in a circularly symmetric reaction–diffusion annulus. The Galerkin method is used to approximate the spatial structure of the reactant and autocatalyst concentrations. Ordinary differential equations are then obtained as an approximation to the governing partial differential equations and analyzed to obtain semi-analytical results for this novel geometry. Singularity theory is used to determine the regions of parameter space in which the different types of steady-state diagram occur. The region of parameter space, in which Hopf bifurcations can occur, is found using a degenerate Hopf bifurcation analysis. A novel feature of this geometry is the effect, of varying the width of the annulus, on the static and dynamic multiplicity. The results show that for a thicker annulus, Hopf bifurcations and multiple steady-state solutions occur in a larger portion of parameter space. The usefulness and accuracy of the semi-analytical results are confirmed by comparison with numerical solutions of the governing partial differential equations.  相似文献   

16.
In this paper, a Leslie-type predator–prey system with simplified Holling type IV functional response and strong Allee effect on prey is proposed. The dissipativity of the system and the existence of all possible equilibria are investigated. The investigation emphasizes the exploring of bifurcation. It is shown that the system exists several non-hyperbolic positive equilibria, such as a weak focus of multiplicities one and two, (degenerate) saddle–nodes and Bogdanov–Takens singularities (cusp case) of codimensions 2 and 3. At these equilibria, it is proved that the system undergoes various kinds of bifurcations, such as saddle–node bifurcation, Hopf bifurcation, degenerate Hopf bifurcation and Bogdanov–Takens bifurcation of codimensions 2 and 3. With the parameters selected properly, there exhibits a limit cycle, a homoclinic loop, two limit cycles, a semistable limit cycle, or the simultaneous occurrence of a homoclinic loop and a limit cycle in the system. Moreover, it is also proved that the system has a cusp of codimension at least 4. Hence, there may exist three limit cycles generated from Hopf bifurcation of codimension 3. Numerical simulations are done to support the theoretical results.  相似文献   

17.
This paper intends to explore the bifurcation of limit cycles for planar polynomial systems with even number of degrees. To obtain the maximum number of limit cycles, a sixth-order polynomial perturbation is added to a quintic Hamiltonian system, and both local and global bifurcations are considered. By employing the detection function method for global bifurcations of limit cycles and the normal form theory for local degenerate Hopf bifurcations, 31 and 35 limit cycles and their configurations are obtained for different sets of controlled parameters. It is shown that: H(6)  35 = 62 − 1, where H(6) is the Hilbert number for sixth-degree polynomial systems.  相似文献   

18.
In this paper, we concentrate on the spatiotemporal patterns of a delayed reaction‐diffusion Holling‐Tanner model with Neumann boundary conditions. In particular, the time delay that is incorporated in the negative feedback of the predator density is considered as one of the principal factors to affect the dynamic behavior. Firstly, a global Turing bifurcation theorem for τ = 0 and a local Turing bifurcation theorem for τ > 0 are given. Then, further considering the degenerated situation, we derive the existence of Bogdanov‐Takens bifurcation and Turing‐Hopf bifurcation. The normal form method is used to study the explicit dynamics near the Turing‐Hopf singularity. It is shown that a pair of stable nonconstant steady states (stripe patterns) and a pair of stable spatially inhomogeneous periodic solutions (spot patterns) could be bifurcated from a positive equilibrium. Moreover, the Turing‐Turing‐Hopf–type spatiotemporal patterns, that is, a subharmonic phenomenon with two spatial wave numbers and one temporal frequency, are also found and explained theoretically. Our results imply that the interaction of Turing and Hopf instabilities can be considered as the simplest mechanism for the appearance of complex spatiotemporal dynamics.  相似文献   

19.
Yu  Pei  Zhang  Wenjing 《Journal of Nonlinear Science》2019,29(5):2447-2500

This paper is concerned with complex dynamical behaviors of a simple unified SIR and HIV disease model with a convex incidence and four real parameters. Due to the complex nature of the disease dynamics, our goal is to explore bifurcations including multistable states, limit cycles, and homoclinic loops in the whole parameter space. The first contribution is the proof of the existence of multiple limit cycles giving rise from Hopf bifurcation, which further induces bistable or tristable states because of the coexistence of stable equilibria and periodic motion. Next, we propose that the existence of Bogdanov–Takens (BT) bifurcation yields the bifurcation of homoclinic loops, which provides a new mechanism for generating disease recurrence, for example, the relapse–remission, viral blip cycles in HIV infection. Last, we present a novel method for the derivation of the normal forms of codimension two and three BT bifurcations. The method is based on the simplest normal form theory from Yu’s previous works.

  相似文献   

20.
Bifurcations and Stability Boundary of a Power System   总被引:2,自引:0,他引:2  
A single-axis flux decay model including an excitation control model proposed in [12,14,16] isstudied.As the bifurcation parameter P_m (input power to the generator) varies,the system exhibits dynamicsemerging from static and dynamic bifurcations which link with system collapse.We show that the equilibriumpoint of the system undergoes three bifurcations:one saddle-node bifurcation and two Hopf bifurcations.Thestate variables dominating system collapse are different for different critical points,and the excitative controlmay play an important role in delaying system from collapsing.Simulations are presented to illustrate thedynamical behavior associated with the power system stability and collapse.Moreover,by computing the localquadratic approximation of the 5-dimensional stable manifold at an order 5 saddle point,an analytical expressionfor the approximate stability boundary is worked out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号