首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
ABSTRACT

Nano-polycrystalline diamonds (NPDs) have become fundamental tools for cutting-edge X-ray absorption spectroscopy (XAS) studies at high P/T conditions that opened up new research directions by overcoming previous limitations. Indeed, NPDs yield a continuous and weak X-ray background signal which enables the collection of high-quality XAS data of materials compressed in diamond anvil cells. This is a critical advantage over the classically used single-crystal diamonds that generate strong parasitic signals (glitches) which render the analysis of XAS data in many cases impossible. In this contribution we give an overview of the impact and the scientific opportunities that NPDs opened up for extreme condition XAS spectroscopy at the European Synchrotron Radiation Facility and discuss future needs.  相似文献   

2.
ABSTRACT

In this work, we use extended X-ray absorption fine structure (EXAFS) data collected using nano-polycrystalline diamond anvil cell to study the atomic arrangement in Zr–Cu metallic glass in high pressure (HP) conditions. To reveal the microscopic details of stress accommodation mechanism, we performed molecular dynamics (MD) simulations of the HP atomic arrangement. By comparing the experimental and the calculated Zr and Cu K-edge EXAFS signal we prove the realistic character of the computer simulations. A detailed geometrical analysis of the simulated atomic configurations shows that with increasing hydrostatic pressure the local structure of Zr–Cu amorphous alloy becomes gradually dominated by Cu-centred icosahedral structural motifs involving fivefold symmetry incompatible with crystalline ordering. The variation of the short-range order is attributed to preferential straining of mechanically soft bonds between zirconium atoms.  相似文献   

3.
Abstract

The diffraction by diamonds of a diamond-anvil cell has been observed to cause sharp dips in the intensity transmitted by the cell. As a result, the intensities of sample reflections measured in X-ray single crystal studies at high-pressure are significantly reduced when the diamond diffraction attenuates either the beam incident on the sample, or the one diffracted from it. This effect should be taken into account in the data collection, by avoiding, for each reflection, the diffractometer settings at which diffraction from the diamonds occurs.  相似文献   

4.
A new double-beveled anvil for the synthesis of high-quality diamonds has been described, which is used in a China-type large-volume, cubic-anvil, high-pressure apparatus (LV-CHPA, SPD-6X2000). Our results indicate that the pressure generation of a double-beveled anvil is more efficient than that of a single-beveled anvil. To gain the same cell pressure (5.5 GPa), the oil pressure of LV-CHPA using double-beveled anvils decreased by about 10%, compared to using single-beveled anvils. Furthermore, a double-beveled anvil can pressurize a cubic cell of 36 mm3 up to about 6.0 GPa, and simultaneously can increase the temperature up to 1360°C for routine operation. This provides considerable advantages to the synthesis of high-quality diamonds under ultra-high-pressure conditions with the same hydraulic rams.  相似文献   

5.
ABSTRACT

Both micro-paired and conical support type double-stage diamond anvil cells (ds-DAC) were tested using a newly synthesized ultra-fine nano-polycrystalline diamond (NPD). Well-focused X-ray sub-micron beam and the conically supported 2nd stage anvils (micro-anvils) with 10?μm culet enable us to obtain good quality X-ray diffraction peaks from the sample at around 400?GPa. The relationship between confining pressure and sample pressure depends heavily on the initial height (thickness) of micro-anvils, the difference of a few micrometers leads to a quite different compression path. The conical support type is a solution to retain both enough thickness and strength of micro-anvils at higher confining pressure conditions. All conical support ds-DAC experiments terminated by the failure of the 1st stage anvil instead of 2nd one. The combination of ultra-fine NPD 2nd stage anvil and NPD 1st stage anvil opens a new frontier for measurement of the X-ray absorption spectrum above 300?GPa.  相似文献   

6.
Synthesis of diamond single crystals in Fe80Ni20 C system was carried out in a cubic anvil high-pressure and high-temperature apparatus. This paper reports that the surface morphology and inclusion distribution of the grown diamonds had been observed. It finds that the inclusions in cubic and octahedral diamonds radiated along certain crystal orientation, while the inclusion distribution in cubo-octahedral diamond seemed independent of crystal orientation. By using scanning electron microscope, the surface morphology of the three shapes of diamonds was observed. The results of Mossbauer spectrum indicated that there were iron-inclusions FeaC and Fe-Ni alloy in the diamonds. According to the Fe-C phase diagram, FeaC should have formed during the quenching process. Nickel might have an inhibitory effect on the formation of Fe3C.  相似文献   

7.
Abstract

We review the chemical and mechanical behaviour of diamond and other materials of use in diamond anvil cells intended to operate at high temperature. Operation at up to 600?C presents no special problems, whereas high-pressure studies at higher temperatures require cells constructed from unusual materials and controlled-atmosphere operation. Methods of P and T determination are also discussed.

Presented at the IUCr Workshop on ‘Synchrotron Radiation Instrumentation for HighPressure Crystallography’. Daresbury Laboratory 20-21 July 1991  相似文献   

8.
The latest results of experimental study of the effect of high pressure on the magnetic and crystal structures, electronic and spin states, and transport properties of some 3d-metal oxides with different crystal structures are reported. Along with the X-ray diffraction, optical absorption spectroscopy, and Raman spectroscopy, direct resistivity measurements have been performed and several techniques based on synchrotron radiation were used to carry out high-pressure experiments in diamond anvil cells. Original Russian Text 7sC I.S. Lyubutin, A.G. Gavriliuk, 2007, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2007, Vol. 71, No. 11, pp. 1635–1639.  相似文献   

9.
10.
A. L. Ruoff  Y. K. Vohra 《高压研究》2013,33(1-6):791-793
Abstract

Synthetic Type 1b yellow diamonds containing nitrogen in substitutional form and with extremely low birefringence were used as anvils for ultra high pressures in the diamond anvil cell. Pressures were measured by the ruby fluorescence technique to above 200 GPa. Using x-ray diffraction the maximum pressure was 210 GPa, while an x-ray based pressure of 245 GPa was achieved with natural diamonds with a somewhat more optimal geometry. Nitrogen platelets appear to be not essential for exceeding 200 GPa. The optical properties of synthetic diamond at ambient and megabar stresses will be discussed.  相似文献   

11.
利用金刚石压腔和同步辐射X射线衍射技术,对α-石英和柯石英在常温高压下的相变行为进行了研究。实验结果表明:α-石英在约23 GPa开始发生结构相变,在约44 GPa相变完成,直至59 GPa仍能观察到结晶态;柯石英在约22 GPa转变为柯石英-Ⅱ相,高于36 GPa时,继续发生结构转变,直至59 GPa仍有结晶态;氖气和氩气所提供的不同静水压条件对α-石英和柯石英的高压相变行为影响不大。实验结果为进一步厘清二氧化硅物相的压致相变行为和相变机制提供了实验支撑。  相似文献   

12.
Abstract

We present a new technique for structure characterization under high pressure conditions. The use of an undulator beam of the third-generation ESRF source of synchrotron radiation has enabled the first single crystal EXAFS experiments at high pressure using a diamond anvil cell as pressure generator. Taking advantage of the linear polarization of X-rays the technique becomes an orientation-selective probe of the local structure of materials. We describe the principle of the technique and some applications.  相似文献   

13.
High-quality p-type boron-doped IIb diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K.The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively.The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique.The electrical properties including resistivities,Hall coefficients,Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method.The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized.With the increase of quantity of additive boron,some high-index crystal faces such as {113} gradually disappear,and some stripes and triangle pits occur on the crystal surface.This work is helpful for the further research and application of boron-doped semiconductor diamond.  相似文献   

14.
On the basis of the high-pressure diamond anvil cell experiments on Os metal, Cynn et al. [Phys. Rev. Lett. 88, 135701-1 (2002)] have reported that this metal has lower compressibility than diamond. In the present work we have reanalysed the experimental data of Cynn et al. We find that the bulk moduli of Os and diamond are close to each other, implying that Os metal is as incompressible as diamond, but not more so. Our first principles total energy calculations using the full potential linearised augmented plane wave method on Os and diamond also suggest the same results.  相似文献   

15.

We have investigated high-pressure structural properties and ab-initio band structure calculations of the ternary CuGaS 2 by single crystal X-ray diffraction up to 8 GPa. The single crystal X-ray diffraction experiments were performed in a Merrill-Bassett diamond anvil cell. The analysis of the X-ray data makes possible the accurate determination of the atomic position of the unit cell under pressure. The structural parameter u and the Cu-S and Ga-S bond lengths have been deduced. The results of the electronics band structure calculation using a first-principles pseudo-potential method and the local density approximation (LDA) are reported. The pressure derivatives of the energy gap are calculated and the values are in reasonable good agreement with the experimental ones.  相似文献   

16.
ABSTRACT

A review of some important technical challenges related to in situ diamond anvil cell laser heating experimentation at synchrotron X-ray sources is presented. The problem of potential chemical reactions between the sample and the pressure medium or the carbon from the diamond anvils is illustrated in the case of elemental tantalum. Preliminary results of a comparison between reflective and refractive optics for high temperature measurements in the laser-heated diamond anvil cell are briefly discussed. Finally, the importance of the size and relative alignment of X-ray and laser beams for quantitative X-ray measurements is presented.  相似文献   

17.
Abstract

The principal sources of systematic error in high-pressure x-ray structure determination with a diamond anvil cell have been studied in detail. The results of these studies have been used to develop techniques to minimise or correct for these effects.  相似文献   

18.
We report here high-pressure x-ray diffraction (XRD) studies on tellurium (Te) at room temperature up to 40 GPa in the diamond anvil cell (DAC). The XRD measurements clearly indicate a sequence of pressure-induced phase transitions with increasing pressure. The data obtained in the pressure range 1 bar to 40 GPa fit five different crystalline phases out of Te: hexagonal Te (I) → monoclinic Te(II) → orthorhombic Te (III) → Β-Po-type Te(IV) → body-centered-cubic Te(V) at 4, 6.2, 11 and 27 GPa, respectively. The volume changes across these transitions are 10%, 1.5%, 0.3% and 0.5%, respectively. Self consistent electronic band structure calculations both for ambient and high pressure phases have been carried out using the tight binding linear muffin tin orbital (TB-LMTO) method within the atomic-sphere approximation (ASA). Reported here apart from the energy band calculations are the density of states (DOS), Fermi energy (E f) at various high-pressure phases. Our calculations show that the ambient pressure hexagonal phase has a band gap of 0.42 eV whereas high-pressure phases are found to be metallic. We also found that the pressure induced semiconducting to metallic transition occurs at about 4 GPa which corresponds to the hexagonal phase to monoclinic phase transition. Equation of state and bulk modulus of different high-pressure phases have also been discussed.  相似文献   

19.
Abstract

X-ray diffraction has been measured for crystalline silicon, crystalline germanium, amorphous silicon and amorphous germanium at temperatures down to 100 K and pressures up to 20 GPa using a diamond anvil cell and synchrotron radiation. The structural phase transitions, including amorphization, take place in the pressure-temperature range. It has been found that the structures after the phase transitions strongly depend on the path in the pressure-temperature diagram through which the system undergoes the phase transitions. For any of the aforementioned four materials, the high-pressure phase with the p-Sn structure is quenched during a release of pressure at 100 K, and transforms into an amorphous state when heated up to around 2 GPa. The path dependence of the states is discussed in relation to the pressure dependence of the heights of the energy barriers which have to be overcome when phase transitions occur. The effect of a structural disorder on the phase transition is also discussed by comparing the experimental results for the crystalline and amorphous materials.  相似文献   

20.
ABSTRACT

We investigated the optical properties (absorption, luminescence and Raman spectra) of nanopolycrystalline diamond (NPD) aiming at exploring its capabilities as a pressure sensor and as a pressure-cell anvil for combined X-ray/neutron and optical studies. Notably, we analysed the Raman peak shift and broadening with pressure using a Moissanite Anvil Cell (MAC). The results are compared with those obtained in a DAC, where Raman signals from NPD chips and diamond anvils strongly overlap. Its pressure behaviour in the hydrostatic and non-hydrostatic regimes were investigated. We showed that the nanopolycrystalline structure induces remarkable differences in the peak shift and broadening between NPD and natural type IIa single-crystal diamond, making NPD suitable as pressure gauge for pressure determination and testing hydrostaticity of pressure transmitting medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号