首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The method of isotopic contrast in combination with inelastic neutron scattering has been used to investigate the vibrational spectrum of the copper atoms in Pr2CuO4. It is shown that the energy positions of the features of the vibrational spectrum of copper in Pr2CuO4 and CuO (which also has a planar oxygen coordination of copper) coincide. We conclude that the dynamical behavior of the copper atoms is formed mainly by their interaction with the nearest-neighbor oxygen atoms. Fiz. Tverd. Tela (St. Petersburg) 41, 1149–1153 (July 1999)  相似文献   

2.
A series of CuO/CeO2 catalysts with different Cu-Ce compositions were synthesized by co-precipitation method and characterized by X-ray diffraction, H2-TPR, CO-TPD, SEM and X-ray photoelectron spectroscopy (XPS) techniques. The effects of Cu-Ce composition and water vapor on the catalytic properties for the selective CO oxidation in the hydrogen-rich gas were investigated. The results indicated that CuO (10%)/CeO2 catalyst remained the maximum CO conversion and selectivity at 140 and 160 °C, while the performance of CuO/CeO2 catalysts deteriorated with the CuO molar ratio further increased. The interfacial CuO and CeO2 interaction and synergistic effect enhanced the redox properties of CuO/CeO2 catalyst and the highly dispersed copper species were proposed as the active sites for the selective CO oxidation. The blockage of catalytic active sites by absorbed water and the formation of CO-H2O surface complexes reduced the activity of CuO (10%)/CeO2 catalyst. The decreasing of surface lattice oxygen and absorbed oxygen species and the agglomeration of copper particles were the plausible interpretations for the deactivation of CuO (10%)/CeO2 catalyst.  相似文献   

3.
F. Arrouy  C. Cros  G. Demazeau 《高压研究》2013,33(4-6):307-311
Abstract

Two types of solid solutions exist in the La2CuO4-Nd2CuO4 system, with respectively the T/O and T′ type structure of La2CuO4 and Nd2CuO4. When synthesized in air at high temperature and normal pressure, both solid solutions exhibit semi-conducting properties. A treatment under oxygen pressure causes a slight change in the unit cell parameters of the T/O type solid solution, a significant shift of its upper limit towards higher neodynium contents and a small increase of the average oxidation state of copper. All these modifications result from the insertion of some oxygen species in the T/O type-structure and induce a superconducting behaviour.  相似文献   

4.
Neutron powder diffraction has been used to study the defect structure of neodymium cerium cuprite Nd2−x CexCuOy (x=0.15). It has been shown that in addition to oxygen vacancies, O2 sites in superconducting samples may also contain a small quantity of implanted oxygen atoms positioned between copper ions and neodymium/cerium, which control the electrical charge in the Cu-O planes. The oxygen distribution among crystal lattice sites in Nd2−x CexCuOy (x=0.15) as determined, the average charge of the copper ions was calculated by the method of valence sums, and a correlation was established between the charge of the copper-oxygen plane and T c. Fiz. Tverd. Tela (St. Petersburg) 40, 177–183 (February 1998)  相似文献   

5.
Crystalline [CuNd2(C4O4)4(H2O)16]·2H2O constructed of complexes of trivalent neodymium and divalent copper, has been synthesized and studied by EPR. The square anion groups (C4O4) enter as bridge ligands, forming chains of neodymium ions interconnected by (C4O4)Cu(C4O4) fragments. It is found that the relaxation rate of the neodymium subsystem at room temperature significantly exceeds the exchange interaction rate between copper and neodymium ions. Under these conditions the magnetic properties of the crystal are determined by two magnetically nonequivalent chains of copper ions, which do not interact. The intrachain exchange interaction via hydrogen bonds is estimated to be ∼0.1 cm−1. As one proceeds from the high-temperature (250<T<300 K) to the low-temperature region (T<40 K), a substantial change in the nature of the interaction is revealed. An unusual magnetic structure given in a crystal is observed at low temperatures, which is determined by the presence of two magnetically nonequivalent “ribbons,” formed by the interacting copper and neodymium ions: chains of copper ions are framed on two sides by chains of neodymium ions. The magnitude of the parameter of the exchange interaction between the copper and neodymium ions is estimated as J Cu-Nd⩾0.2 cm−1. An exchange interaction between magnetically nonequivalent neodymium ions is not revealed in the EPR spectra. Fiz. Tverd. Tela (St. Petersburg) 39, 2057–2061 (November 1997)  相似文献   

6.
Composite CuO/Cu2O/Cu anode for lithium ion battery was designed and synthesized via facile electrodeposition and the subsequent in situ thermal oxidation in air at 300 °C for 1 h. The as-prepared composite CuO/Cu2O/Cu anode was studied in terms of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), galvanostatic charge/discharge, cyclic voltammetry (CV), and AC impedance. As expected, the composite CuO/Cu2O/Cu with CuO-rich surface displayed hierarchical cypress-like morphology; furthermore, the hierarchical cypress-like CuO/Cu2O/Cu anode also delivered satisfactory electrochemical performances. For example, the reversible discharge capacity remained at 534.1 mAh/g even after 100 cycles. The enhanced electrochemical performances were attributed to the hierarchical cypress-like porous structure and the synergistic effect among the composite active copper oxides and highly conductive Cu current collector.  相似文献   

7.
Irradiation of various single-crystal CuO faces [ac,bc,(110)] with 4.6-MeV He+ ions has been found to result in reduction of CuO to Cu2O and Cu on the irradiated and unirradiated sides, lifting of forbiddenness from optical transitions in the [CuO4]7− electron center in the 0.7–0.95-eV energy range, a change in dichroism near the bands corresponding to transitions in the hole centers, [CuO4]5−, and electron centers, [CuO4]7−, as well as in a resonant increase of absorption at 0.95–1.30 eV with an unusual polarization dependence. The results of He+ irradiation of CuO single crystals are discussed in terms of a model of the nucleation of the phase of polar (electron and hole) centers in copper-oxygen systems. Fiz. Tverd. Tela (St. Petersburg) 40, 419–424 (March 1998)  相似文献   

8.
Sputter-deposited Al/CuO multilayers capable of highly energetic reactions have been the subject of intense studies for tunable initiation and actuation. Designing high performance Al/CuO-based initiator devices definitively requires reliable prediction of their ignition and reaction kinetics including self-heating or ageing as a function of heating rate and environmental conditions. The paper proposes a heterogeneous reaction model integrating an ensemble of basic mechanisms (oxygen diffusion, structural transformations, polymorphic phase changes) that have been collected from recent experimental investigations. The reaction model assumes that the rate of reaction is limited by the transport of oxygen across the growing layer of Al2O3 separating Al and CuO. Importantly, we show that the model predicts reasonably all exotherms through a wide range of temperature (ambient – 1000°C), all resulting from a pure diffusion process as experimentally observed for such Al/CuO multilayers. The model shows how the temperature ramp affects the structure of the multilayer and especially the growth of alumina-based interfacial regions. It highlights the importance of the interfacial chemistry evolution such as the native mixture of AlxCuyOz transformation into a thin amorphous alumina, and the polymorphic phase transformation of this latter. The first one occurring at ~350°C results in a loss of continuity of the interface leading to the accelerated redox reaction whereas the second one occurring between 500 and 600°C produces a denser barrier to oxygen diffusion leading to the stop of redox reaction. We finally use the model to simulate thermal annealing as usually performed in accelerated ageing experiments. We theoretically observe and experimentally validate that a two weeks exposure of the multilayers at 200°C starts degrading the multilayers thermal properties whereas when the temperature remains below 200°C, the material keeps its entire integrity.  相似文献   

9.
The optical absorption spectra of single-crystal CuO bombarded with 5-MeV electrons exhibit reduced absorption in the region of the fundamental absorption edge at 17 eV, which corresponds to the b 1g e u transition with charge transfer in CuO 4 6− . A simultaneous increase in absorption is observed in the middle infrared and in the region of high energies centered on 2.9 eV. The experimental results obtained are interpreted in terms of ideas on the phase-inhomogeneous nano-agglomorated structure in copper oxides that occurs as a result of the nucleation of polar centers (CuO 4 5− , CuO 4 7− ) under electron bombardment. Fiz. Tverd. Tela (St. Petersburg) 39, 2141–2146 (December 1997)  相似文献   

10.
Cu 2p, Cu 3d and O 1s electron spectra and Cu L3M4,5M4,5 Auger electron spectra from Cu, Cu2O and CuO have been studied at 25°C and at 400°C. The height of the Cu 2p satellite peaks from copper oxides was lowered when the temperature was raised. The intensity of the satellites also decreased if the sample stayed in vacuum for prolonged periods.Two commercial cuprous oxides were different with respect to the behaviour of the satellite peaks. One produced very weak satellites, while the other produced strong ones as previously reported in the literature for cuprous oxide. The colour of the oxides was slightly different, indicating that the stoichiometry was not the same.The change in satellite intensity is accompanied by changes in oxygen spectra, Cu L3M4,5 M4,5 Auger spectra and valence band spectra.It is useful to study Auger electrons in addition to the direct electron spectrum, since Auger signals can be more sensitive to surface conditions than direct electron spectra.  相似文献   

11.
This work describes EXAFS and EPR studies of inclusion compounds of the trans-[Cu(en)2(H2O)2]2+ complex in the macrocyclic cavitand CB[8] at different stages of heat treatment in the hydrogen atmosphere in a temperature range of 200–330°C. The structure and composition of the nearest environment of copper atoms are characterized, and the interatomic distances and coordination numbers are determined. It is shown that the structure of the copper complex inside the cavitand CB[8] remains unchanged at the first stage of complex preparation and upon heating up to 280°C in hydrogen atmosphere. The copper environment corresponds to four nitrogen atoms and two oxygen atoms. Further temperature treatment at 330°C causes decomposition of the complex inside the cavitand without the formation of copper clusters.  相似文献   

12.
The effect of doping with Li+, Zn2+, Ni2+, and Ga3+ ions on the magnetic susceptibility of the low-dimensional antiferromagnet CuO (T N=230 K) has been studied within a broad temperature range of 77–600 K. The solubility of impurity ions in the CuO lattice is low, ⩽3%. Impurity ions, similar to intrinsic defects, distort antiferromagnetic coupling and can shift the long-and short-range magnetic-order regions toward lower T. Fiz. Tverd. Tela (St. Petersburg) 40, 1876–1880 (October 1998)  相似文献   

13.
《Surface science》1994,321(3):L249-L254
The characteristics of CO and NO adsorption on surfaces of CuO(110) and Cu2O(110) have been studied by using the self-consistent-charge discrete variational Xa method (SCC-DV-Xa). The calculated results show that the CO and NO molecules are perpendicularly adsorbed on cuprous ions of Cu2O and cupric ions of CuO, respectively and with oxygen pointing upward in both cases. The order of chemisorption energy of the four adsorbed systems is: CuO-NO > Cu2O-CO > Cu2O-NO > CuO-CO. In all chemisorptions discussed d orbitals of Cu do play an important role.  相似文献   

14.
Manjula Sharma 《哲学杂志》2013,93(22):1921-1938
Abstract

In this work, the Al/CNT/CuO nano-thermite samples are prepared by ultrasonic mixing with variable CNT content. The morphology of nano-thermites analysed by electron microscopy revealed that the CNTs are dispersed and there are intimate contacts between fuels (Al and CNT) and oxidiser (CuO) constituents of the nano-thermite. Raman spectroscopy technique is used to analyse the structural integrity of the CNTs in the nano-thermite. The thermite reaction characteristics are evaluated by simultaneous thermogravimetric analysis/differential scanning calorimetry technique. The exothermic enthalpy of the Al/CNT/CuO nano-thermite samples increased with increasing CNT content. The effect of Al particle size and Al/Cu molar ratio variation on the thermite reaction enthalpy is also analysed. The ignition temperature of the thermite reaction is also lowered by 71 °C than that of Al/CuO nano-thermite. The activation energy for thermite reaction of Al/CNT/CuO nano-thermite is also lowered by 23% to that of pure Al/CuO. The residues of the nano-thermites after the thermite reaction at 1010 °C are collected and analysed by the X-ray diffraction.  相似文献   

15.
《Physics letters. A》1988,130(3):177-181
Perturbed angular correlation measurements were performed after 111In implantation into CuO and Cu2O powder samples and 1 μm thick Cu2O surface layers. The quadrupole hyperfine interaction of 111Cd was studied in isochronal annealing cycles at 370–1170 K covering the CuO→Cu2O phase transition. The electric field gradients obtained for 111Cd on substitutional Cu lattice sites were associated with the repective oxygen coordinations. Annealing of Cu2O surface layers on copper foils resulted in a texture with the efg pointing preferentially out of the surface plane.  相似文献   

16.
The controlled aggregation of copper oxide nanoparticles (CuO NPs) induced by a multitopic carboxylic acid allows the formation of mesoporous structures with high surface area, in the order of 100 m2 g?1, as demonstrated herein. The main novelty in the designed process is the use, as a previous step, of a sacrificeable monotopic carboxylate ligand for capping the CuO NPs. This step avoids the often observed unwanted behavior of uncontrolled aggregation and material densification. The monotopic 3,6,9‐trioxadecanoate (HTODA) is used as the capping agent to prepare TODA@CuO, a starting material that forms colloidal dispersions in ethanol. For NPs self‐assembly, the bulky tricarboxylic acid 4,4′,4′′,‐benzene‐1,3,5‐triyl‐tris(benzoic acid) (H3BTB) is chosen as an efficient interlinker in the controlled aggregation. The obtained mesoporous network shows a considerable thermal stability, retaining ≈70% of its specific surface area after annealing at 300 °C under vacuum. Thermal treatment involves TODA capping agent elimination, but not BTB linker. The simultaneous reduction of the CuO NPs to a Cu2O/Cu mixture is observed.  相似文献   

17.
用浸渍法制备了CuO/Al2O3 (Cu/Al)、CuO/CeO2- Al2O3 (Cu/CeAl)和CuO/La2O3-Al2O3(Cu/LaAl)催化剂. 通过原位XRD、Raman和H2-TPR方法, 对催化剂中的CuO物种以及CuO-Al2O3的固-固相反应进行了表征. 结果表明,对于Cu/Al催化剂,CuAl2O4存在于CuO与Al2O3层之间,CuO以高分散和晶相两种相态存在于催化剂的表层;对于Cu/CeAl催化剂,除了少量高分散和晶相的CuO存在于表层外,大部分CuO迁移到了CeO2的内层,  相似文献   

18.
The biomorphic CuO/CeO2/Al2O3 was used as a catalyst in methanol steam reforming (SRMe), and the reaction mechanism was studied. It was found that the oxidation states of Cu in the biomorphic sample would vary with the reaction temperature and they also affected the rate of the reaction. Below 200 °C, SRMe would not occur, and the X-ray diffractometry study indicated that the CuO/CeO2/Al2O3 sample remained unchanged. Above 200 °C, the SRMe occurred when CuO started to be reduced to Cu. As the reaction temperature increased, Cu reacted with CO2 and led to the formation of Cu2O during the reversed water gas shift reaction. Above 250 °C, the conversion of MeOH to CO2 and H2 reached to a saturation of 95% even if the amount of metallic Cu was reduced to half of its original portion. This confirmed that both Cu and Cu2O were active components for promoting SRMe.  相似文献   

19.
Well-dispersed cupric oxide (CuO) nanoparticles with the size from 10 to 100 nm were successfully synthesized by thermal decomposition of CuC2O4 precursor at 400 °C. The prepared CuO nanoparticles of different sizes used as anode materials for Li ion battery all exhibit high electrochemical capacity at the first discharge. However, with the particles size changing, an interesting phenomenon appears. That is, the larger size of the particles is, the discharge capacity of the first time smaller is, while that of the second time is larger. At the same time, the mechanism of the above phenomenon is discussed in this paper. Surprisingly, we have synthesized the copper nanoparticles with different sizes by the CuO of different sizes as the electrodes.  相似文献   

20.
Pure and Li2O-doped CuO/CeO2 catalysts calcined at 500 °C were prepared by impregnation method. The catalysts are characterized by DTA, TG-DTG, XRD, IR, TEM, nitrogen adsorption at −196 °C and the catalytic decomposition of hydrogen peroxide at 30 °C.The effects of molar ratio, heat treatment time and the doping on the structural, surface and catalytic properties of nanocrystalline Cu/Ce-mixed oxides system have been studied. It was found that the catalytic activity of ceria-supported copper oxide catalysts increased by increasing both the heat treatment time and dopant content. However, the pure Cu/Ce-mixed oxide solids containing 10 wt.% CuO exhibited the best performance. The characterization results indicated that the higher surface area, the formation of solid solution between copper and cerium oxides, and the high dispersion of copper species on the ceria were responsible for the high catalytic activity of the CuO/CeO2 catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号