首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A massive cubic press, with a maximum load of 1400 tons on every WC anvil, has been installed at the High Pressure Laboratory of Peking University. High-P experiments have been conducted to examine the performance of the conventional experimental setup and some newly developed assemblies adopting the anvil-preformed gasket system. The experimental results suggest that (1) the conventional experimental setup (assembly BJC2-0) can reach pressures up to about 6 GPa with a large cell volume of 34.33 cm3; (2) the anvil-preformed gasket system, despite decreasing the P-generating efficiency, extends the P-generating capability up to about 8 GPa at the expense of reducing the cell volume down to 8.62 cm3 (assembly BJC2-6); (3) due to the large cell volume, it is possible to make further modifications to extend the pressure range, as readily demonstrated, to about 10 GPa (assembly BJC5-7); (4) the effect of high temperature on the pressure generation of the press is not significant. It follows that this cubic press can be very useful in synthesizing materials of large volume at high pressures and to the studies such as high-P phase equilibrium, trace element partitioning and isotope fractionation in the research fields of Earth and planetary sciences.  相似文献   

2.
In our previous studies on the tolerance of living organisms such as planktons and spores of mosses to the high hydrostatic pressure of 7.5 GPa, we showed that all the samples could be borne at this high pressure. These studies have been extended to the extreme high pressure of 20 GPa by using a Kawai-type octahedral anvil press. It was found that the average diameter of the spores of Venturiella exposed to 20 GPa for 30 min was 25.5 μm, which is 16.5% smaller (40.0% smaller in volume) than that of the control group which was not exposed to high pressure. The inner organisms showed a further extent of plastic deformation. As a result, a gap appeared between the outer cover and the cytoplasm. A relationship has been obtained between the survival ratio and plastic deformation of spores of moss Venturiella caused by the application of ultra high pressure.  相似文献   

3.
The first-order Raman band of diamond anvils has been investigated at pressure up to 380 GPa in order to develop an optical pressure determination method. The high frequency edge of the band was calibrated by the pressure scale of the equation of state of Pt. The universality of the relationship between the sample pressure and the edge-frequency was confirmed up to 370 GPa and the usefulness of the diamond anvil Raman gauge was demonstrated. Using the diamond anvil Raman spectroscopy, the stress-state of the anvil culet was directly observed in the multimegabar pressure range. Obtained pressure dependence of the shear stress suggested further extension of feasible pressure beyond 400 GPa.  相似文献   

4.
High pressure and high temperature conditions of 4 GPa and 500°C were generated using a small-sized cubic-type multi-anvil apparatus, which was originally developed for high pressure and low temperature experiments. The drop in pressure was negligible as the temperature was increased from room temperature to 300°C at 4.5 GPa under conditions where the press was clamped. Two-dimensional X-ray diffraction images were successfully obtained from a pure aluminum specimen at 4 GPa and 500°C in the angle-dispersive mode.  相似文献   

5.
Structural change in Bi2Te3 under high pressure up to 16.6 GPa has been studied by powder x-ray diffraction. We observed two times of phase transitions at room temperature at the pressures of 8 and 14 GPa, respectively. According to our preliminary result on electrical resistance, it is reasonable to suppose that superconducting transition with T c =2.8 K at the pressures of 10.2 GPa is observed in phase II. On the other hand, we found anomalies of the pressure dependences of lattice parameters and volume at around 2 GPa, which probably means the change in electrical structure on the Fermi surface.  相似文献   

6.
New ACu3V4O12 (A=Gd, Tb, Er) phases have been prepared at high pressure and high-temperature conditions (P~8–9 GPa, T~1000°C) in a toroid-type high pressure cell. These compounds crystallize in the cubic symmetry with a perovskite-like structure. At ambient pressure, they are paramagnetic and have activation-type conductivity. The effect of high pressure (10–50 GPa) on the electrical properties of the materials was analyzed in the temperature range from 78 to 300 K. Pressure ranges of the transition from activation type to metallic conductivity have been determined. The crystal structure of ACu3V4O12 (A=Gd, Tb, Er) was found to be stable up to 50 GPa.  相似文献   

7.
8.
The physical and mechanical properties of a C60 fullerene sample have been investigated under high pressure–high temperature conditions using a designer Diamond Anvil Cell. Electrical resistance measurements show evidence of C60 cage collapse at 20 GPa, which leads to the formation of an insulating phase at higher pressure. Energy dispersive X-ray diffraction (EDXD) data indicated that the characteristic fcc reflections gradually decrease in intensity and eventually disappear above 28 GPa. A C60 sample was laser-heated at a pressure of 35 GPa to a temperature of 1910±100 K and, subsequently, decompressed to ambient conditions. The photoluminescence spectra and the Raman spectrum of the pressure–temperature-treated sample were measured at a low temperature of 80 K. Raman peak at 1322.3 cm?1 with full-width half-maximum of 2.9 cm?1 was observed from the sample, which is attributed to the hexagonal diamond phase in the sample. The room temperature photoluminescence spectra showed a symmetric emission band centered in the red spectral range with a peak at 690 nm. The structural analysis of the pressure–temperature-processed C60 sample using EDXD method showed strong internal structure orientation and a phase close to hexagonal diamond. Mechanical properties such as hardness and Young’s modulus were measured by nanoindentation technique and the values were found to be 90±7 and 1215±50 GPa, respectively and these values are characteristic of sp3-bonded carbon materials.  相似文献   

9.
We describe some important improvements allowed by the development of new cell assemblies coupled to opposed conical sintered diamond anvils in the Paris–Edinburgh press. We provide X-ray absorption and diffraction experiments carried out at pressures up to 16.5 GPa. The maximum temperature reached was 1800 K for P<10 GPa and 1300 K for higher pressures. The sintered diamond anvils are X-ray transparent and give access to a much larger X-ray window than the tungsten carbide anvils, even at the highest pressure. Therefore, X-ray measurements are performed using in situ cross-calibration simultaneously. We also describe a new heating setup used to reach high temperatures, despite the low conductivity of the sintered diamond core by deviating the electrical current using copper strips. These improvements are illustrated by recent data collected using angle dispersive in situ X-ray diffraction on liquid Fe-18%wt S and using EXAFS at the barium K-edge on Ba8Si46 silicon clathrates and at the iodine K-edge on iodine-intercalated nanotubes.  相似文献   

10.
BaWO4-II has been synthesized at 5 GPa and 610°C. Its high pressure behavior was studied by in situ synchrotron X-ray diffraction measurements at room temperature up to 17 GPa. BaWO4-II retains its monoclinic structure. Bulk and axial moduli determined by fitting a third-order Birch–Murnaghan equation of state to lattice parameters are: K 0=86.2±1.9 GPa, K 0(a)=56.0±0.9 GPa, K 0(b)=85.3±2.4 GPa, and K 0(c)=146.1±3.2 GPa with a fixed K′=4. Analysis of axial compressible modulus shows that the a-axis is 2.61 times more compressible than the c-axis and 1.71 times more compressible than the b-axis. The beta angle decreases smoothly between room pressure and 17 GPa from 93.78° to 90.90°.  相似文献   

11.
12.
The elastic properties of high-quality ZnO crystals and nanopowder of grain size of about 65 nm are studied for both wurtzite (low pressure) and rock-salt high pressure phases. The measured values of bulk moduli for wurtzite and rock-salt phases of bulk ZnO crystals are equal to 156±13 and 187±20 GPa, respectively, and considerably larger for ZnO nanocrystals. The phase transition begins at a pressure of about 9 GPa and it is completed at a pressure of about 13.8 GPa for bulk crystals, whereas the values of pressure at which the phase transition occurs are lower for nanocrystals. A carefull Rietveld analysis of the obtained data does not exhibit the presence of any intermediate phases between low pressure wurtzite and high pressure rock-salt phases of ZnO. The phase transition is accompanied by a strong decrease in the near-band-gap photoluminescence intensity. In addition, the pressure coefficient of the near-band-gap luminescence in ZnO nanocrystals exhibits strong deviation from the linearity observed in bulk crystals. An analysis of the results shows that defects present in the nanopowdered sample are responsible for the observed effects.  相似文献   

13.
A simple theoretical model is developed to study the pressure–volume–temperature relationship and applied for nanocrystalline forsterite in the temperature range 300–1573 K and pressure range 0–9.6 GPa. The results obtained with the present model are in quite close agreement to the experimental values. The model is therefore extended to study the variation of bulk modulus and the coefficient of volume thermal expansion under high pressure and high temperature. The present study also reveals that the quasi-harmonic approximation, i.e., the product of bulk modulus and the coefficient of volume thermal expansion as constant, is valid at least up to the temperature 1573 K and pressure 9.6 GPa in case of nanocrystalline forsterite.  相似文献   

14.
Pressure-induced structural changes on nano-crystalline La0.8Sr0.2Mn0.8Fe0.2O3 were studied using high-pressure Mössbauer spectroscopy and high-pressure X-ray diffraction. Mössbauer measurements up to 10 GPa showed first order transition at 0.52 GPa indicating transformation of Fe4?+? to high spin Fe3?+?, followed by another subtle transition at 3.7 GPa due to the convergence of two different configurations of Fe into one. High-pressure X-ray diffraction measurements carried up to 4.3 GPa showed similar results at 0.6 GPa as well as 3.6 GPa. Attempts were made to explain the changes at 0.6 GPa by reorientation of grain/grain boundaries due to uniaxial stress generated on the application of pressure. Similarly variation at 3.6 GPa can be explained by orthorhombic to monoclinic transition.  相似文献   

15.
We present two distorted face-centered cubic (dfcc) structures of yttrium under high pressure, which have been found by a first-principles genetic algorithm technique. The structures are a tetragonal P43 (dfcc-I) and a triclinic P1¯ (dfcc-II), formed by slight distortions from a trigonal Rm structure reported as the dfcc phase earlier. The enthalpy difference between the two dfcc structures is less than 0.2 mRy/atom, and dfcc-I is marginally more stable than dfcc-II in lower pressure region. The enthalpy comparison among candidate structures indicates the structural phase transitions into dfcc-I at 41 GPa, into dfcc-II at 81 GPa, and into an orthorhombic Fddd structure at 106 GPa.  相似文献   

16.
We have investigated the pressure-induced phase transition behavior (~3.0 GPa) of aqueous 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) solutions with N-methylacetamide (NMA), which is a simple protein model compound, using Raman spectroscopy. From Raman spectral changes and optical observation in the sequence of elevated pressure, we found that the aqueous [bmim][Cl] solution with NMA in the water-rich condition induces the high pressure crystallization at 2.6 GPa. On the other hand, in the [bmim][Cl]-rich condition, high pressure crystalline phase was not observed even up to 3.0 GPa. Our results show that the aqueous [bmim][Cl] solution in the ionic liquid-rich condition along with the use of pressure has a potential for protein-preserving solvent.  相似文献   

17.
Magnetic ordering temperatures in heavy rare earth metal dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to a pressure of 69 GPa and a temperature of 10 K. Previous studies using magnetic susceptibility measurements at high pressures were able to track magnetic ordering temperature only till 7 GPa in the hexagonal close packed (hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. This is followed by a rapid increase in the magnetic ordering temperatures in the double hcp phase and finally leveling off in the distorted face centered cubic phase of Dy. Our studies reaffirm that 4f-shell remains localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.  相似文献   

18.
We have performed mid- and far-infrared (IR), Raman, and angular dispersive X-ray diffraction studies on melamine at high pressure up to 36 GPa. We have confirmed the presence of three phase transitions; the first between 1 and 2 GPa, the second between 7 and 9 GPa, and the third near 16 GPa. We observed a softening of the N–H symmetric and antisymmetric vibrations with pressure, suggesting that intermolecular hydrogen bonding increases as the intermolecular distance decreases similarly to what was observed in triamino-trinitrobenzene. The molecular decompression data from core intramolecular peaks of mid-IR and Raman indicate that melamine did not chemically decompose up to the highest investigated pressures but the sample suffered some irreversible amorphization. We have further clarified the lack of observation of any phase transitions in prior Raman and IR studies by examining the pressure dependence of other uninvestigated modes of vibration.  相似文献   

19.
Using designer diamond anvils and angle dispersive X-ray diffraction technique at a synchrotron source, we have performed simultaneous electrical and structural studies on neodymium metal to 152 GPa in a diamond anvil cell. Four-probe electrical resistance measurement shows a 38% decrease in the electrical resistivity, associated with the delocalization of the 4f-shell electrons, starting at 100 GPa up to a final pressure of 152 GPa. The continuous decrease in electrical resistivity is consistent with the observation of a gradual phase transition to α-U structure in this pressure range. The (1 1 1) diffraction peak of α-U structure first appears at 100 GPa and increases in intensity with increasing pressure to 152 GPa. This increase in intensity is attributed to an increasing volume fraction of α-U phase and an increase in structural y-parameter from 0.07 at 118 GPa to 0.095 at 152 GPa. In contrast to the abrupt pressure-induced f-electron transition seen in cerium and praseodymium, the continuous evolution of α-U structure and electrical resistivity in neodymium confirms the gradual nature of 4f delocalization process in this element.  相似文献   

20.
Abstract

SrClF is an important optical crystal and can be used as pressure gauge in diamond anvil cell at high pressure. In this work, we performed a systematic study on the structural, electronic and elastic properties of SrClF under pressure, as well as its thermal conductivity, by first-principles calculation. Different exchange-correlation functionals were tested and PBESOL was finally chosen to study these properties of SrClF. Studies reveal that SrClF has a bulk modulus of about 56.2 GPa (by fitting equation of states) or 54.3 GPa (derived from elastic constants), which agree well with the experimental result. SrClF is mechanically and dynamically stable up to 50 GPa. Its elastic constants increase with the applied pressure, but its mechanical anisotropy deteriorates as the pressure increases. Investigation of its electronic properties reveals that SrClF is a direct band-gap insulator with a gap value of 5.73 eV at 0 GPa, which decreases with the increasing pressure and the reason is found by analysing the partial density of states. Based on the calculated phonon dispersion curves, thermal conductivity of SrClF is predicated. At ambient conditions, the predicted thermal conductivity is about 3.74 Wm?1 K?1, while that obtained using the simplified Slack model give a slightly larger value of 4.62 Wm?1 K?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号