首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of the dose rate on the rate of radiation-induced polymerization of ethylene in tert-butyl alcohol containing 5 vol-% water was studied. The reaction was carried out by use of a reactor with a capacity of 100 ml under the following conditions: pressure, 200 kg/cm2; temperature, 24 ± 3°C; dose rate, 3.7 × 104?1.6 × 105 rad/hr; amount of medium, 70 ml. The dose rate exponents for rate of the polymerization, the molecular weight, and the number of polymer chain were found to be about 0.8, ?0.1, and 0.9, respectively. These results were well explained with kinetic results (obtained by a novel analytical method) for the polymerization which contain both first-order and second-order terminations for the concentrations of propagating radical. The individual values of the rate constants in each elementary reaction were also obtained.  相似文献   

2.
The radiation-induced heterogeneous polymerization of ethylene in ethyl alcohol was carried out in a reactor with a capacity of 100 ml under the following reaction conditions: temperature, 24 ± 3°C; pressure, 200–400 kg/cm2; amount of ethyl alcohol, 30–70 ml; dose rate, 3.7 × 104?1.05 × 105 rad hr. The effects of amount of ethyl alcohol, pressure, and dose rate on the rate of polymerization at the steady state, the amount of polymerized monomer, the molecular weight of polymer, and the number of polymer chains were studied compared with the results obtained in the polymerization in tert-butyl alcohol. It was found that there is an acceleration period in the early stage of reaction followed by a steady state. The rate of polymerization was maximum when about 50 ml of ethyl alcohol was used. The molecular weight of polymer increased with a decrease in the amount of ethyl alcohol. The dependences of pressure (p) and dose rate (I) on the rate of polymerization at steady state (Rs) and the molecular weight of polymer (M?n) were expressed as follows; Rsp0.74, M?np0.3?0.4, Rs ∝ I0.9 and M?nI?0.1 ?0.0. The results were analyzed by a kinetic treatment based on a reaction mechanism containing both first-and second-order terminations. The rate constant of first-order termination by radical occlusion was considerably larger than that in the polymerization in tert-butyl alcohol, because the affinity of ethyl alcohol for polyethylene is smaller than that of tert-butyl alcohol. It was found that chain transfer to ethyl alcohol takes place easily and the G value of ethyl alcohol for initiation is larger than 1.5.  相似文献   

3.
The radiation-induced polymerization of ethylene in cyclohexane was carried out in a reactor of 100 ml capacity under a range of temperature of 25–150°C, dose rate of 4.1 × 104–2.9 × 105 rad/hr, pressure of 200 kg/cm2, and amount of cyclohexane of 20–90 ml. The polymerization was found to proceed at a steady state from the beginning. The polymerization rate is maximum at ca. 50 ml of cyclohexane. The dose rate exponent of the polymerization rate was 0.6 at every temperature from 25 to 150°C. The polymer molecular weight is in the range of 103–104, independent of dose rate, and decreases with increasing amount of cyclohexane. The molecular weight distribution is unimodal and narrow. Kinetic analysis of these results indicates that the polymerization proceeds via a simple scheme of homogeneous polymerization and the polymer molecular weight was determined by the chain transfer reaction which takes place mostly with cyclohexane. The unimodal and narrow molecular weight distribution is also consistent with the homogeneous polymerization scheme.  相似文献   

4.
The gamma-radiation-induced polymerization of ethylene in the presence of 13–30 ml of tert-butyl alcohol was carried out under a pressure of 120–400 kg/cm2 at a dose rate of 1 × 103 to 2.5 × 104 rad/hr at 30°C with a 100 ml reactor. The polymerization rate and the molecular weight of the polymer increased with reaction time and pressure and decreased with amount of tert-butyl alcohol. The polymer yield increased almost proportionally with the dose rate, while the molecular weight was almost independent of it. These results were graphically evaluated, and the rate constants of initiation, propagation, and termination for various conditions were determined. No transfer was observed. On the basis of these results the role of tert-butyl alcohol in the polymerization is discussed.  相似文献   

5.
The effects of pressure of the radiation-induced polymerization of ethylene in tert-butyl alcohol were studied. The reaction was carried out by use of a reactor with a capacity of 100 ml under the following conditions; pressure, 60–400 kg/cm2; temperature, 24 ± 3°C; dose rate, 2.0 × 104?1.6 × 105 rad/hr; amount of medium (tert-butyl alcohol containing 5 vol-% water), 70 ml. The results of polymerization were analyzed by a kinetical treatment based on a reaction mechanism with both first- and second-order terminations for the concentration of propagating, radical. On the basis of the kinetical treatment the rate constants of each elementary reaction at several pressures were determined, and the activation volumes of elementary reactions were obtained and are discussed in connection with the reaction mechanism. Consequently, the rate constants of propagation, first-order termination, and second-order termination at pressure p and at 24°C were expressed by,   相似文献   

6.
The role of chain transfer was studied for the radiation-induced polymerization of ethylene in precipitating media, namely n-butyl alcohol, tert-butyl alcohol and their mixtures. The affinities of those solvents for polyethylene are similar, but the chain-transfer coefficient of n-butyl alcohol is larger than that of tert-butyl alcohol. The polymerizations were carried out in a reactor of 100 ml under a pressure of 300 kg/cm2, at 60°C, dose rate of 3.07 × 104–1.75 × 105 rad/hr in the presence of 50 ml of solvents. The polymerization in tert-butyl alcohol shows the kinetic behavior characteristic of a heterogeneous polymerization, such as rate acceleration, high dose rate dependence of polymerization rate, and low dose rate dependence of polymer molecular weight, whereas the polymerization in n-butyl alcohol does not exhibit such behavior and gives polymer having a molecular weight much lower than that of polymer obtained in tert-butyl alcohol. The polymer formed in tert-butyl alcohol exhibits a bimodal molecular weight distribution measured by gel permeation chromatography. In mixed tert-butyl alcohol and n-butyl alcohol solvent, with increasing fraction of n-butyl alcohol, the two peaks not only shift to lower molecular weight but the higher molecular weight peak becomes relatively small. Eventually, the polymer formed in n-butyl alcohol exhibits a unimodal distribution. Those results are well explained on the basis of the proposed scheme for heterogeneous polymerization.  相似文献   

7.
The initiation and propagation reaction in γ-ray-induced polymerization of ethylene was studied by the two-stage irradiation method, i.e., a first stage in which initiation and propagation occur at a high dose rate, and a second stage where only the growth of polymer radical occurs. The rate of initiation is calculated from the amount of polymerized monomer and the degree of polymerization as the rate of increase in the number of polymer chains. The initiation rate is shown to be proportional to the ethylene density in the reactor and dose rate. GR of radical formation is found to be about 1.6 at 30°C. at a dose rate of 2.5 × 104 rad/hr. and is almost independent of ethylene density but decreases slightly with increasing irradiation dose rate. The lifetime of the growing polymer chain radical is shown to be long at normal temperature. The absolute propagation rate is proportional to the square of ethylene fugacity and depends on dose rate to some extent. For chain growth, irradiation of low dose rate is necessary. The apparent activation energy for the propagation reaction is ?9 kcal./mole.  相似文献   

8.
Copolymerization of methyl trifluoroacrylate (MTFA) with ethylene in bulk was induced by γ irradiation. The copolymerization was observed to proceed in the liquid monomer mixture of MTFA and ethylene at 25°C with the dose rates ranging from 5.0 × 104 to 1.0 × 106 rad/hr. A wide range of the initial monomer composition gives an almost equimolar and alternating copolymer. The highest polymerization rate was observed at the equimolar monomer composition. The dose rate exponent of the polymerization rate is unity. The reactivity ratios of r1 (MTFA) and r2 (ethylene) were determined to be 0.034 and 0.14, respectively.  相似文献   

9.
The γ-radiation-induced polymerization of ethylene with the use of liquid carbon dioxide as a solvent, was studied from the viewpoint of kinetics. The polymerization was carried out at conversions less than 10% under the pressure ranging from 100 to 400 kg./cm.2, dose rates 1.3 × 104?1.6 × 105 rad/hr., and temperatures of 20–90°C. The concentration of carbon dioxide varied up to 84.1 mole-%. The polymerization rate and the polymer molecular weight were observed to increase with reaction time. This observation, however, becomes less pronounced with increasing concentration of carbon dioxide and with rising temperature. The exponents of the pressure and the dose rate were determined to be 2.3 and 0.85 for the rate, and 2.0 and ?0.20 for the molecular weight, respectively. From the kinetic considerations for these results, the effect of carbon dioxide on the initiation and termination reaction in the polymerization was evaluated.  相似文献   

10.
Bulk polymerization of α-methylstyrene was carried out in a wide dose rate range, 7.6–256 rad/sec by γ rays and 8.5 × 103–2.1 × 105 rad/sec by electron beams. At high dose rate by electron beams, cationic polymerization took place along with formation of oligomeric product of DP n = ~4. At low dose rate by γ rays, radical polymerization was found to occur in water-saturated monomer. The cationic polymerization at high dose rate proceeds with essentially the same mechanism as was already known in γ-ray polymerization of dry monomers. Relatively low reaction rate of the cationic polymerization compared with that of styrene is explained with the fact that the propagation of α-methylstyrene is much more easily inhibited by a slight amount of water.  相似文献   

11.
The effects of acetylene on the γ-radiation-induced polymerization of ethylene were studied from the viewpoint of kinetics. The experiments were carried out under a pressure of 150–400 kg/cm2; the temperature was 30°C; the dose rates were 2.7 × 104 and 1.1 × 105 rad/hr; the acetylene content was 0–2.21%. Both the polymer yield and the molecular weight increased acceleratively with the reaction pressure in the polymerization containing 0.18% acetylene. The yield increased almost proportionally with the dose rate, and the molecular weight was found to be almost independent of the dose rate in the polymerization containing 2.21% acetylene. The polymerization rate and the molecular weight increased with reaction time, but the increment decreased with increasing acetylene content. The degree of increase in the molecular weight also decreased with increasing time. These results were analyzed by using a graphical evaluation method for kinetics, and the effects of acetylene on each elementary step in the polymerization discussed.  相似文献   

12.
Changes in the molecular-weight characteristics of the product of ethylene polymerization in the course of reaction in the presence of a homogeneous catalytic system and in the number and reactivity of catalyst active sites were studied. The catalytic system consisted of bis[N-(3-tert-butylsalicylidene)anilinato]zirconium dichloride and methylalumoxane as an activator. This catalytic system exhibited the signs of unsteady-state conditions: the rate of polymerization dramatically decreased as the reaction time increased. At the onset of polymerization (to 5 min), the catalyst was single-site, and it produced low-molecular-weight polyethylene with M w = (4–10) × 103 g/mol. The fraction of active sites at the initial point in time was as high as 11% based on the initial amount of the zirconium complex. The reactivity of these centers was very high (the rate constant of polymer chain growth was 5.4 × 104 l mol−1 s−1 at 35°C). As the polymerization time increased, the number of active sites decreased and the molecular-weight distribution of polyethylene broadened because of the decay of a portion of initial centers and the formation of new centers that produced high-molecular-weight polyethylene with M w to 130 × 104 g/mol. The propagation rate constant measured at a sufficiently long polymerization time (20 min) was lower than that at the initial point in time; this fact suggests the much lower reactivity of the new active sites.  相似文献   

13.
The effect of dose rate on the rate of polymerization and molecular weight distribution of radiation-induced polymerization of styrene adsorbed on silica gel was studied in a wide dose rate range of 4.4 × 104 to 3 × 108 rad/hr by γ rays of 60Co and electron beams with a Cockcroft-Walton-type accelerator. Dose rate dependence on the initial rate of polymerization was about 1 below 3 × 107 rad/hr, and it decreased gradually at high dose rates. Throughout the dose rate range, graft polymerizations and homopolymerizations by cationic and radical mechanisms proceeded simultaneously. Dose rate dependence of the cationic polymerization was 1 below 3 × 107 rad/hr, while dose rate dependence of the radical polymerization was 0.65 below 3 × 107 rad/hr. At high dose rates, molecular weight and fraction of graft polymer decreased, and fraction of cationic polymerization increased. A very high-molecular-weight graft polymer was formed above 4.4 × 105 rad/hr at the initial stage of the polymerization. The dose rate dependence of this polymerization was larger than 1 and decreased with increase in dose rate. The polymerization seems to be related to an excitation of monomer or growing chain.  相似文献   

14.
Bulk polymerization of isobutyl vinyl ether was studied at 25°C in a wide dose rate range, 8.2-277 rad/sec by γ rays and 8.8 × 103-2.2 × 105 rad/sec by electron beams. At low dose rate, 8.2-277 rad/sec, only the radical polymerization took place. At high dose rate exceeding 8.8 × 103 rad/sec, cationic polymerization was found to occur in addition to the radical polymerization. DP n of the product at high dose rate was 9-10. Further drying of the monomer increased Rp, and molecular weight of the product formed by cationic mechanism also increased.  相似文献   

15.
The effects of oxygen on the γ-radiation-induced polymerization of ethylene were studied at a temperature of 30°C.; the pressure was 400 kg./cm.2, the dose rate was 1.9 × 105 rad/hr.; and oxygen content was from 1–2000 ppm. The main product was solid polymer, and no liquid product was found. The gaseous products were hydrogen, acetylene, higher hydrocarbons, carbon dioxide, aldehydes, and acids. Several kinds of carbonyls similar to those formed in γ-ray oxidized polyethylene were observed in the polymer. The polymer yield and the degree of polymerization decreased markedly with increasing oxygen content, while the amount of carbonyls in the polymer increased. The number of moles of polymer chain and the amounts of hydrogen and acetylene were found to be almost independent of the oxygen content. The polymerization of pure ethylene was not affected by carbon dioxide and formic acid. On addition of acetaldehyde, the polymer yield and the degree of polymerization decreased markedly, while the number of moles of polymer chain increased. In the polymerization of ethylene containing oxygen, both the rate of oxygen consumption and the carbonyl content of the polymer increased, while the inhibition period decreased by the addition of acetaldehyde. It was found that the degree of polymerization after the inhibition period is almost independent of the reaction time in the presence of acetaldehyde, while it increases with the time in the absence of acetaldehyde.  相似文献   

16.
The γ-ray-induced copolymerization of ethylene and vinyl chloride with the use of liquid carbon dioxide as a solvent was studied under a total pressure of 400 kg/cm2, with a dose rate of 2.5 × 104 rad/hr at 30°C. A rubberlike, sticky polymer is obtained when the molar concentration of vinyl chloride is less than 30% in the monomer mixture, and the polymer is a white powder at higher concentrations of vinyl chloride. Infrared, x-ray, and differential thermal analyses confirm that the polymerization products are noncrystalline, true random copolymers. The rate of copolymerization decreases markedly when a small amount of vinyl chloride is added to ethylene monomer. In the range of vinyl chloride concentration higher than 5%, however, the rate and the molecular weight of copolymer increase with increasing concentration of vinyl chloride. It has been concluded from kinetic considerations based on these results that the rate of initiation increases proportionally with the concentration of vinyl chloride. Further, the growing chain radicals are shown to be deactivated by the cross-termination reaction between the radicals with terminal unit of ethylene and vinyl chloride, and no transfer reaction occurs.  相似文献   

17.
An understanding of the physical and chemical processes involved in the melt polymerization of polyesters in the higher inherent viscosity ranges is of fundamental importance in polyester preparation. For example, the volatile condensation product must diffuse to a polymer–vapor interface before polymerization can take place. Thus, the rate of polymerization of a polyester may be dependent not only upon the chemical kinetics of the polymerization reaction but also upon the diffusion of the condensation product through the polymer melt. The objective of the work presented in this paper was to determine to what degree diffusion or reaction kinetics, or both, limit the melt polycondensation of poly(ethylene terephthalate). Degrees of polymerization in melts between 0.0285 and 0.228 cm in depth at 270°C were measured for various reaction times and were compared with the predictions of mathematical models. The polycondensation rates under these conditions depend upon both the polycondensation rate constant k1 and the diffusivity D of ethylene glycol through the melt. Estimates of the values to these parameters are: k1 = 0.0500 (moles/mole of repeat unit)?1 sec?1; D = 1.66 × 10?4 cm2/sec.  相似文献   

18.
The γ induced polymerization of styrene in the presence of polar additives such as tributylphosphate, triethyl amine and ethanol was studied at dose rate of 5.0×10~(17) eV/ml. min. The re-sult shows that radiation induced polymerization of styrene was sensitized by the three kinds ofadditives at the approximate same rate and the experimental results were in agreement with thetheoretical calculation of WAS equation. The cause of sensitization is due to the proton transfer.  相似文献   

19.
Radiation-induced polymerization of isoprene in bulk state was studied at 25°C in a wide dose rate range. Variations of the rate of polymerization and molecular weight of the products were essentially the same as those observed in the monomers which were capable of both radical and cationic polymerizations. At low dose rate, 7.0-230 rad/sec, radical polymerization took place. At high dose rate, 8.8 × 103-2.2 × 105 rad/sec, radical and cationic polymerizations took place concurrently. The average molecular weight of the high-dose-rate product was about 850, independent of dose rate. The microstructure of the products at high dose rate consisted mainly of trans- 1,4 units with only about 7% of cis- 1,4 and 10% of 3,4-vinyl units. The residual unsaturation in the high-dose-rate products was 90%. Decreases in cis units and residual unsaturation at high dose rate were accounted for by the change in predominant mechanism of polymerization with dose rate.  相似文献   

20.
Homopolymerizations and copolymerizations of perfluorovinyl acetic acid (FVA) and its methyl ester (MFVA) were carried out by γ radiation at a temperature of 25°C, a dose rate of 1 × 106 rad/hr, and FVA/α-olefin and MFVA/α-olefin ratios of 10/90-90/10 in the monomer mixture. FVA and MFVA gave small quantities of brown and greasy low-molecular-weight homopolymers. The polymerization rates of both FVA and MFVA were extremely small, as shown by the maximum G value of monomer consumption of 12. FVA and MFVA reacted with α-olefin to form waxlike copolymers. The copolymerization rates of both FVA and MFVA with α-olefin were remarkably larger than those of the homopolymerizations, particularly with ethylene. The polymer compositions of FVA/ethylene or MFVA/ethylene was nearly 1/2 over a wide range of the monomer compositions. The Mayo–Lewis method gave negative r1 (FVA) and r1 (MFVA). The polymer composition curves could be well interpreted by introducing the penultimate model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号