首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The method of quenching in fusing state under high static pressure (MQFSHP) was applied for the first time to prepare the quasicrystal icosahedral phase of Al80Mn14Si6 alloy. The pressure was from 2.8GPa to 3.1GPa and the cooling rate during quenching was of about 100°C/s. Some sharp electron diffraction spots showing an arrangement with a five-fold symmetry axis and noncrystalline ring have been observed in electron diffraction experiment.

The crystallization temperature of I phase obtained from high pressure(HP) is close to that of rapid cooling ribbon, but the cooling rate of the sample obtained is lower than that of rapid cooling ribbon.  相似文献   

2.
Abstract

The condition of the formation of quasicrystal in Al4Mn and Al6Cr under high static pressure has been investigated for the first time. I-phase and T-phase have been observed in electron diffraction experiment. The structures of Al4Mn quenched at about 100 K/s are different under various pressure from 0.95GPa to 4.45GPa. The phase transition from I- and T-phase to crystal phase has also been investigated.  相似文献   

3.
 静高压(4.5 GPa)下Al6Mn合金熔态淬火(冷却速度约为102 ℃/s),得到Al6Mn合金的高压淬火样品。X射线分析表明:Al6Mn合金的高压淬火样品中含有准晶二十面体相、Al6Mn相及Al的面心立方相;与常压结果相比,高压淬火方法的冷却速率可比常压的低约3个数量级的条件下产生准晶二十面体相。其晶化温度与急冷甩带的相近。对静高压(2.5 GPa)下Al6Mn准晶条带样品的晶化过程进行了研究。X射线分析表明:静高压下Al6Mn准晶条带样品的晶化过程中,出现了一种新的未知亚稳相——准晶向晶体转化中的一种中间过渡态,具有类T相形式;与常压结果比较,高压下准晶相晶化温度提高。  相似文献   

4.
研究了高温高压下制备MgxZn1-xO(0.30x0.60)固溶体的过程.在1000—2000℃和4—5.6GPa的条件下,制备出稳定的单一立方相MgxZn1-xO(x=0.4,0.5,0.6)固溶体,解决了常压下MgxZn1-xO的分相问题.通过X射线衍射仪和扫描电子显微镜等测试手段,对MgxZn1-xO样品进行了表征,阐明了立方相MgxZn1-xO的形成机制,给出了高压下MgxZn1-xO固溶体的温度与组分相图.  相似文献   

5.
Abstract

Luminescence spectra from Eu3 + ion in B-type (monoclinic) 2O3 powder have been recorded at room temperature as a function of pressure using a diamond anvil cell. Changes in the spectral pattern of the Eu3 + ion emission at about 4 GPa indicated that a phase transition to the A-type (hexagonal) structure had taken place. Upon release of the applied pressure, the B-type structure was regained with hysteresis. The spectral shifts with pressure have been used to study the effect of pressure on the spin-orbit interaction of the 4f electrons in the Ed + ion. The relationship between the relative changes in the spin-orbit coupling constant, ζ4f, and the volume accompanying the phase transition is also discussed.  相似文献   

6.
Using a microcircuit fabricated on a diamond anvil cell, we have measured in-situ conductivity of HgSe under high pressures, and investigated the temperature dependence of conductivity under several different pressures. The result shows that HgSe has a pressure-induced transition sequence from a semimetal to a semiconductor to a metal, similar to that in HgTe. Several discontinuous changes in conductivity are observed at around 1.5, 17, 29 and 49GPa, corresponding to the phase transitions from zinc-blende to cinnabar to rocksalt to orthorhombic to an unknown structure, respectively. In comparison with HgTe, it is speculated that the unknown structure may be a distorted CsCl structure. For the cinnabar-HgSe, the energy gap as a function of pressure is obtained according to the temperature dependence of conductivity. The plot of the temperature dependence of conductivity indicates that the unknown structure of HgSe has an electrical property of a conductor.  相似文献   

7.
明星  王小兰  杜菲  陈岗  王春忠  尹建武 《物理学报》2012,61(9):97102-097102
采用平面波赝势方法对菱铁矿FeCO3高压下的晶体结构, 电子构型和电子结构进行了第一性原理计算研究. 研究过程中考虑了菱铁矿FeCO3真实的反铁磁(AFM) 自旋有序态, 模拟静水压环境, 从零压逐步加压到500 GPa. 在40---50 GPa压力范围内, FeCO3发生了从高自旋(HS) AFM态到低自旋(LS) 非磁性(NM) 态的磁性相变, 伴随着晶胞体积坍塌10.5%. FeCO3在相变前后均是绝缘体, 但是相变后的LS-NM态的Fe2+ 离子的3d电子局域化程度更强, 能隙随着压力的进一步增大而逐步增大, 离化程度更高, 直到500 GPa没有发生金属绝缘体相变.  相似文献   

8.
Abstract

The results of X-ray investigations of Tl2Ba2Ca2Cu3O10 show a preferential c-axis decrease under high pressure, leading to a bulk modulus of B = 1370 kbar at 300 K. The results are compared to previous investigations of La2CuO4, La1.8Sr0.2CuO4 and Pr2CuO4, that show a similar linear compressibility in a- and b- axis direction. The linear compressibility in c-axis direction is dominated by the degeneration of the Cu-O octohedra and by the compressibility of intercalated layers.  相似文献   

9.
Abstract

High-pressure neutron diffraction experiments have been performed at room temperature on a powdered sample of the perovskite type-layer compound (CD3ND3)2MnCl4. A phase transition from the orthorhombic room-temperature phase (ORT) to a new high-pressure phase (HP) is demonstrated at 20.5 ± 0.2 kbars. A monoclinic unit cell with lattice parameters a = 6.824 (5) Å; b = 7.409 (8) Å c = 17.126 (12) Å and β = 82.94(9)° has been inferred for the HP phase, consistent with a two-dimensional perovskite-type structure. The HP phase appears to be much more compact than ORT; it is characterized, in particular, by an important compression (?10%) of the inter-layer distance. Space groups P2/c or P21/c consistent with the experimental data have been deduced for the HP phase, after group theoretical considerations based on shear transformation and order-disorder mechanisms.  相似文献   

10.
Abstract

In-situ X-ray diffraction technique using synchrotron radiation was applied for polymorphic transitions in SnO2 under high pressure and temperature generated with 6–8 type double-stage multianvils made of sintered diamond. At 23.6 GPa, the mixed phases of rutile-type structure (R-SnO2) and columbite-type (c-SnO2) were heated: at 700°C peaks of fluorite-type structure (F-SnO2) began to appear, and at 1000°C, C-SnO2 and 5m later R-SnO2 disappeared completely and a single phase of F-SnO2 was recognized, indicating a direct transition from R-SnO2 to F-SnO2. The volume reduction of 5.3% was obtained for C-SnO2→F-SnO2 transition.  相似文献   

11.
ABSTRACT

Recently, nano-polycrystalline diamond (NPD) anvils have been widely applied in high pressure research using X-ray absorption spectroscopy (XAS). The nanometer-sized polycrystallization in NPD anvils enables us to obtain glitch-free X-ray absorption spectra. This advantage of NPD anvils drastically improves the experimental conditions of XAS, which has previously used conventional single-crystal diamond (SCD) anvils. Distorted spectra due to the glitches from the SCD anvils have been an inevitable problem of XAS. This paper reviews recent studies of XAS and related spectroscopic techniques using the NPD anvils, which have mainly been performed on BL39XU of SPring-8. We demonstrate how NPD anvils are useful when using XAS for high pressure research.  相似文献   

12.
谌岩  刘琳  刘建华  张瑞军 《物理学报》2012,61(17):176103-176103
本文借助金相显微镜, XRD, SEM和DSC等手段对Cu75.15Al24.85合金经1-5 GPa压力, 750℃保温15 min处理前后的组织结构进行了分析,并用电阻率测试仪对合金的 电阻率进行测试,以此探讨了高压处理对Cu75.15Al24.85合金组织与电阻率的影响. 结果表明:高压处理能细化Cu75.15Al24.85合金的组织,增大合金的电阻率, 当压力为3 GPa时,该合金获得的组织最细小,电阻率最大.  相似文献   

13.
Abstract

A phase transition from Ca(OH)2 I (portlandite) to Ca(OH)2 II at high pressure and temperature has been confirmed, using in situ x-ray diffraction in a multianvil high pressure device (DIA). The structure was determined at 9.5 GPa and room temperature from data collected after heating the sample at 300°C at 7.2 GPa in a diamond anvil cell. Both the Le Bail fit and preliminary Rietveld refinement suggest that the new phase, which reverts to Ca(OH), I during pressure release, has a structure related to that of baddeleyite (ZrO1); it is monoclinic (P21/c) with a= 4.887(2), b= 5.834(2), c = 5.587(2), β = 99.74(2)°. The coordination number of Ca increases from six to seven (5 + 2) across the transition. At 500°C, the phase boundary is bracketed at 5.7 ± 0.4 GPa by reversal experiments performed in the DIA.  相似文献   

14.
压力下应变异质结中施主杂质态的Stark效应   总被引:2,自引:0,他引:2       下载免费PDF全文
张敏  班士良 《物理学报》2008,57(7):4459-4465
对应变GaN/AlxGa1-xN异质结系统,考虑理想界面突变势垒,引入简化相干势近似,采用变分法讨论了流体静压力下外界电场对束缚于界面附近的浅杂质态结合能的影响.对GaN为衬底的闪锌矿应变异质结,分别计算了(001)和(111)取向时杂质态的结合能随压力、杂质位置、电场强度以及组分的变化关系.结果表明,杂质态结合能随流体静压力呈近线性变化.电场对杂质态的Stark效应则随杂质位置不同而呈现谱线蓝、红移动.此外,还讨论了在不同压力情况下,Al组分对杂质结合能的影响.当杂质处于GaN材料中且距界面较远时,Al组分的增加使电子的二维特性增强,从而使结合能增大,且压力加剧增幅的增加;当杂质处于AlxGa1-xN材料中,Al组分的增加削弱了杂质与电子间的库仑相互作用,故而结合能降低. 关键词xGa1-xN异质结')" href="#">GaN/AlxGa1-xN异质结 杂质态 压力 Stark效应  相似文献   

15.
Jing Chang  NiNa Ge  Ke Liu 《哲学杂志》2013,93(25):2182-2195
Abstract

A theoretical investigations on the structural stability and mechanical properties of Be3N2 crystallising in α and β phases was performed using first-principles calculations based on density functional theory. The obtained ground state structure and mechanical properties are in excellent agreement with the available experimental and theoretical data. A full elastic tensor and crystal anisotropy of Be3N2 in two phases are determined in the wide pressure range. Results indicated that the two phases of Be3N2 are mechanically stable and strongly pressure dependent in the range of pressure from 0 to 80 GPa. The superior mechanical properties show that the two phases of Be3N2 are potential candidate structures to be the hard material. And the α-Be3N2 has better mechanical properties than β-Be3N2. By the calculated B/G ratio, it is predicted that both phases are intrinsically brittleness and strongly prone to ductility when the pressure is above 65.6 and 68.5 GPa, respectively. Additionally, the pressure-induced elastic anisotropy analysis indicates that the elastically anisotropic of Be3N2 in both phases is strengthening with increasing pressure, and strongly dependent on the propagation direction.  相似文献   

16.
Infrared absorption and Raman study ofβ-Ni(OH)2 has been carried out up to 25 GPa and 33 GPa, respectively. The frequency ofA 2u internal antisymmetric stretching O-H mode decreases linearly with pressure at a rate of −0.7 cm1/GPa. The FWHM of this mode increases continuously with pressure and reaches a value of ∼ 120 cm−1 around 25 GPa. There was no discernible change observed in the frequency and width of the symmetric stretchingA 1g O-H Raman mode up to 33 GPa. The constancy of the Raman mode is taken as a signature of the repulsion produced by H-H contacts in this material under pressure. Lack of any discontinuity in these modes suggests that there is no phase transition in this material in the measured pressure range.  相似文献   

17.
γ-Si3N4在高压下的电子结构和物理性质研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用基于密度泛函平面波赝势方法(PWP)和广义梯度近似(GGA-PW91),计算了不同压强下γ-Si3N4的电子结构、光学性质和力学性质.基于计算结果,分析讨论了γ-Si3N4各物理参数随外压力的变化规律.计算表明,γ-Si3N4是一种适合于在高压条件下工作的材料.  相似文献   

18.
采用气相扩散方法将C60分子填充到单壁碳纳米管(SWNTs)中,制备出高填充比率的豆荚形纳米材料C60@SWNT,又称为peapod.用金刚石对顶砧(DAC)装置获得高压,在高压下同时利用紫外激光处理样品,通过激光和压力的共同作用研究了C60分子在碳管内的聚合相变.在21.5GPa高压下,同时紫外激光(325nm)照射30min后,拉曼光谱表明C60分子在碳管内发生了聚合,形成一维链状O相聚合结构,且该相变是不可逆的. 关键词: 60 peapod')" href="#">C60 peapod 紫外激光 高压 拉曼光谱  相似文献   

19.
J. W. Yang 《高压研究》2013,33(3):376-384
A first-principles investigation on the crystal structural and elastic properties and the equation of state of wurtzite-type cadmium selenide (w-CdSe) has been conducted using the plane-wave pseudo-potential density functional theory and the quasi-harmonic Debye model. The elastic constants, the aggregate elastic moduli, the elastic anisotropy, and Poisson's ratio under pressure have been investigated. Our calculated equilibrium lattice constants, the elastic constants, and the aggregate elastic moduli at zero pressure are in good agreement with the experimental data and other theoretical results. The variations in the compressional and shear elastic wave velocities with pressure at zero temperature up to pressure 2.7 GPa have been studied; the computed Debye temperature at zero pressure and zero temperature is in reasonable agreement with the result of Bonello et al., In addition, the equation of state of w-CdSe in the pressure range of 0–2.7 GPa and up to a temperature of 900 K has also been obtained.  相似文献   

20.
Abstract

X-ray powder diffraction measurements for YBa2Cu3O7-y and NdBa2Cu3O7-y were made at the intense synchrotron radiation source under high pressure up to 5 GPa. These samples were wrapped tightly in platinum foil to avoid deoxidizing atmosphere. The orthorhombic to tetragonal transition temperature increases with pressure in both samples. These results are discussed on the basis of the disordering of the oxygen atoms on the chain sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号