首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Laminated Ti3SiC2 crystals were prepared by hot isostatic pressing from Ti, Si, C and Al powders with NaCl additive in argon at 1350 °C. The morphology and microstructure of Ti3SiC2 crystals were investigated by means of XRD, SEM, and TEM. The high symmetry and crystalline was revealed by high resolution transmission electronic microscope (HRTEM) and selected area electron diffraction (SAED). The growth mechanism of Ti3SiC2 crystals controlled by two-dimensional nucleation was put forward. The growth pattern of layered steps implies that the growth of the (0 0 2) face should undergo two steps, the intermittent two-dimensional nucleation and the continuous lateral spreading of layers on growth faces.  相似文献   

2.
Using the first principles method based on the density functional theory, we investigated the effect of hydrogen-doping on bonding properties of Ti3SiC2. The formation energies of hydrogen interstitials in three possible positions were calculated. The results show that hydrogen favors residing near the (0 0 1) Si plane. In these positions, hydrogen is hybridized most with 1s states of lattice atoms (Si and C), instead of Ti. The presence of hydrogen does not substantially influence the bonding nature of Ti3SiC2; chemical bonding is characterized by the hybridizations of Ti d-Si p and Ti d-C p states, and yields high strength. This is contrary to hydrogen-doping in transition metals, where the electron of hydrogen fills in the d bands of the metals and, as a consequence, decreases the cohesive strength of the lattice.  相似文献   

3.
4.
Hydrostatic pressure has negligible effect on the resistivity anomaly and thec H /a H ratio of Ti2O3. The results are consistent with the band-crossing mechanism wherein the a T and e T bands cross as thec H /a H ratio increases.  相似文献   

5.
The post-corundum phase transition has been investigated in Ti2O3 on the basis of synchrotron X-ray diffraction in a diamond anvil cell and transmission electron microscopy. The new polymorph of Ti2O3 was found at about 19 GPa and 1850 K, and this phase was stable even at about 40 GPa. A new polymorph of Ti2O3 can be indexed on a Pnma orthorhombic cell, and the unit-cell parameters are a=7.6965 (19) Å, b=2.8009 (9) Å, c=7.9300 (23) Å, V=170.95 (15) Å3 at 19 GPa, and a=7.8240 (2) Å, b=2.8502 (1) Å, c=8.1209 (3) Å, V=181.10 (1) Å3 at ambient conditions. The Birch–Murnaghan equation of state yields K 0=206 (3) GPa and K0=4 (fixed) for corundum phase, and K 0=296 (4) GPa and K0=4 (fixed) for the post-corundum phase. The molar volume decreases by 12% across the phase transition at around 20 GPa. The structural identification was carried out on a recovered sample by the Rietveld method, and a new polymorph of Ti2O3 can be identified as Th2S3-type rather than U2S3-type structure. The transition from corundum-type to Th2S3-type structure accompanies the drastic change of the form of polyhedron: from TiO6 octahedron in the corundum-type to TiO7 polyhedron in the Th2S3-type structures.  相似文献   

6.
The effect of Si addition on the interfacial stability of Al-10Ti-5Cu-xSi (x = 0, 5, 10, 15) alloy/SiC is investigated. SiC and the Al-10Ti-5Cu-xSi alloys were compacted to obtain a stable interface with 10 wt% Si. Analysis of the processing conditions and the microstructures indicated that an excellent Ti3SiC2 phase had been formed and the deleterious Al4C3 phase had been eliminated successfully by the addition of 10 wt% Si to the Al-10Ti-5Cu alloy. Formation of Ti3SiC2 increased at first and then decreased, while the formation of Al4C3 was gradually inhibited with increasing Si content. Ti3SiC2 possesses good chemical stability, and flexibility. However, Al4C3 degrades within few days, in composites exposed to ambient conditions. The presence of Ti3SiC2 at the interface and the elimination of Al4C3 together ameliorate the bonding of Al-10Ti-5Cu-xSi alloy to SiC, thereby improving the interfacial stability of Al-10Ti-5Cu-xSi/SiC.  相似文献   

7.
Spectroscopic investigations are presented of KMgF3:Eu2+ crystal under high hydrostatic pressure from ambient to 310 kbar. The sample was excited by 30 ps pulses generated by optical parametric generator (OPG) system with wavelength controlled between 210 and 325 nm. The Grüneisen parameters of individual phonons are obtained from the pressure shift of the Eu2+ emission related to the 6P7/28S7/2 transition accompanied by phonon sideband. The luminescence decays exponentially for the pressure below 135 kbar with lifetime of 3.30 ms and slightly nonexponential above 135 kbar, while the average decay time is nearly independent of the pressure. The results obtained for KMgF3:Eu2+ are compared with those for LiBaF3:Eu2+ in which the 6P7/28S7/2 emission is replaced by the broadband emission of the 4f65d1→4f7 transition at high hydrostatic pressure.  相似文献   

8.
The dielectric and piezoelectric properties of pyrochlore-free lead zirconate titanate-lead zinc niobate ceramics were investigated systematically as a function of Sr doping. The powders of Pb(1? x )Sr x [0.7(Zr1 / 2Ti1 / 2)–0.3(Zn1 / 3Nb2 / 3)]O3, where x?=?0–0.06 were prepared using the columbite-(wolframite) precursor method. The ceramic materials were characterized using X-ray diffraction, dielectric spectra, hysteresis and electromechanical measurements. The phase-pure perovskite phase of Sr-doped PZN--PZT ceramics was obtained over a wide compositional range. The results showed that the optimized electrical properties were also achieved at composition x?=?0.0, which were K P?=?0.69, d 33?=?670?pC?N?1, P r?=?31.9?µC?cm?2 and εrmax?=?18600. Maximum dielectric constant values of the systems decreased rapidly with increasing Sr concentration. Moreover, with increasing Sr concentration dielectric constant versus temperature curves become gradually broader. The diffuseness parameter increased significantly with Sr doping. Furthermore, Sr doping has been shown to produce a linear reduction in the transition temperature (T m)?=?294.1–12.7x°C with concentration (x). Sr shifts the transition temperature of this system at a rate of 12.7°C?mol?1%.  相似文献   

9.
Atomic layer deposited (ALD) Al2O3/dry-oxidized ultrathin SiO2 films as high-k gate dielectric grown on the 8° off-axis 4H-SiC (0001) epitaxial wafers are investigated in this paper. The metal-insulation-semiconductor (MIS) capacitors, respectively with different gate dielectric stacks (Al2O3/SiO2, Al2O3, and SiO2) are fabricated and compared with each other. The I-V measurements show that the Al2O3/SiO2 stack has a high breakdown field ( ≥ 12 MV/cm) comparable to SiO2, and a relatively low gate leakage current of 1× 10-7 A/cm2 at electric field of 4 MV/cm comparable to Al2O3. The 1-MHz high frequency C-V measurements exhibit that the Al2O3/SiO2 stack has a smaller positive flat-band voltage shift and hysteresis voltage, indicating less effective charge and slow-trap density near the interface.  相似文献   

10.
Two new transition metal dinitrides, ReN2 and WN2, with the P4/mmm structure are investigated by the first-principles calculations. The computed shear moduli of 327 GPa for ReN2 and 334 GPa for WN2 exceed those of all transition metal dinitrides previously reported. The estimated theoretical hardness are 46.3 GPa for ReN2 and 47.9 GPa for WN2, respectively. The calculated high shear moduli and hardness indicate that they are potential ultrahard materials. It is important to note that the computed hardness of the weakest bond are 34.7 GPa (W-N) for WN2 and 33.1 GPa (Re-N) for ReN2, much higher than that of 21.1 GPa (Re-B) for ReB2, which suggests that tetragonal ReN2 and WN2 are probably harder than ReB2. The total and partial electron density of states and the electron localization function for ReN2 and WN2 are analyzed. We attribute the high bulk modulus, shear modulus, and hardness to a three-dimensional covalently bonded framework in tetragonal ReN2 and WN2. Our calculations show that tetragonal ReN2 is expected to be synthesized above 62.7 GPa and tetragonal WN2 may be hard to be synthesized.  相似文献   

11.
Jing Chang  NiNa Ge  Ke Liu 《哲学杂志》2013,93(25):2182-2195
Abstract

A theoretical investigations on the structural stability and mechanical properties of Be3N2 crystallising in α and β phases was performed using first-principles calculations based on density functional theory. The obtained ground state structure and mechanical properties are in excellent agreement with the available experimental and theoretical data. A full elastic tensor and crystal anisotropy of Be3N2 in two phases are determined in the wide pressure range. Results indicated that the two phases of Be3N2 are mechanically stable and strongly pressure dependent in the range of pressure from 0 to 80 GPa. The superior mechanical properties show that the two phases of Be3N2 are potential candidate structures to be the hard material. And the α-Be3N2 has better mechanical properties than β-Be3N2. By the calculated B/G ratio, it is predicted that both phases are intrinsically brittleness and strongly prone to ductility when the pressure is above 65.6 and 68.5 GPa, respectively. Additionally, the pressure-induced elastic anisotropy analysis indicates that the elastically anisotropic of Be3N2 in both phases is strengthening with increasing pressure, and strongly dependent on the propagation direction.  相似文献   

12.
A systematic investigation on the fluorescent spectra of SrB4O7:Sm2+ was performed in detail at high-temperature up to 623?K and/or high pressure up to 23.2?GPa with different pressure-transmitting media (PTMs), respectively. Combined with experiment data of previous research, the change of the 7D05F0 line (0–0 line) full width at half maximum (FWHM) of SrB4O7:Sm2+ under different pressure environments was specifically discussed. The results indicate that the FWHM of 0–0 line is sensitive to the non-hydrostatic pressure environment in 2-propanol, and methanol and ethanol mixture (ME) PTMs at ambient temperature. The first-order and the second-order derivation of the temperature dependence of 0–0 line FWHM at ambient pressure are 1.48(±0.21)?×?10?4?nm/K and 9.63(±0.63)?×?10?7?nm2/K2 below 623?K. The 0–0 line FWHM is also sensitive to the non-hydrostatic pressure environment in ME at high-temperature and high pressure simultaneous, the non-hydrostatic transition pressures are 9.6?GPa at 323?K, 11.0?GPa at 373?K, 14.4?GPa at 423?K, respectively. SrB4O7:Sm2+ is recommended as an optical sensor to reflect the change of pressure environment in liquid media at high-temperature and/or high pressure.  相似文献   

13.
Abstract

Basing on “ab-initio” calculations, C3N4 was claimed to be an ultra-hard material with a bulk-modulus close to that of diamond. Five different structural varieties were announced: the graphitic form, the zinc blende structure, the α and β forms of Si3N4 and another form, isostructural with the high pressure variety of Zn2Si04.

Using the same strategy as that developed for diamond or c-BN synthesis, it appears that the graphitic form could be an appropriate precursor for preparing the 3D varieties. Two main problems characterize the C3N4 synthesis: (-) the temperature should be reduced in order to prevent nitrogen loss, (-) the reactivity of the precursors should be improved.

Consequently, we have developed a new process using the solvothermal decomposition of organic precursors containing carbon and nitrogen in the presence of a nitriding solvent. The resulting material, with a composition close to C3N4, has been characterized by different physico-chemical techniques.  相似文献   

14.
A detailed chemical kinetic model for oxidation of C2H4 in the intermediate temperature range and high pressure has been developed and validated experimentally. New ab initio calculations and RRKM analysis of the important C2H3 + O2 reaction was used to obtain rate coefficients over a wide range of conditions (0.003-100 bar, 200-3000 K). The results indicate that at 60 bar and medium temperatures vinyl peroxide, rather than CH2O and HCO, is the dominant product. The experiments, involving C2H4/O2 mixtures diluted in N2, were carried out in a high pressure flow reactor at 600-900 K and 60 bar, varying the reaction stoichiometry from very lean to fuel-rich conditions. Model predictions are generally satisfactory. The governing reaction mechanisms are outlined based on calculations with the kinetic model. Under the investigated conditions the oxidation pathways for C2H4 are more complex than those prevailing at higher temperatures and lower pressures. The major differences are the importance of the hydroxyethyl (CH2CH2OH) and 2-hydroperoxyethyl (CH2CH2OOH) radicals, formed from addition of OH and HO2 to C2H4, and vinyl peroxide, formed from C2H3 + O2. Hydroxyethyl is oxidized through the peroxide HOCH2CH2OO (lean conditions) or through ethenol (low O2 concentration), while 2-hydroperoxyethyl is converted through oxirane.  相似文献   

15.
Abstract

X-ray powder diffraction measurements for YBa2Cu3O7-y and NdBa2Cu3O7-y were made at the intense synchrotron radiation source under high pressure up to 5 GPa. These samples were wrapped tightly in platinum foil to avoid deoxidizing atmosphere. The orthorhombic to tetragonal transition temperature increases with pressure in both samples. These results are discussed on the basis of the disordering of the oxygen atoms on the chain sites.  相似文献   

16.
The structural, electronic and thermodynamic properties of cubic Zn3N2 under hydrostatic pressure up to 80 GPa are investigated using the local density approximation method with pseudopotentials of the ab initio norm-conserving full separable Troullier-Martin scheme in the frame of density functional theory. The structural parameters obtained at ambient pressure are in agreement with experimental data and other theoretical results. The change of bond lengths of two different types of Zn-N bond with pressure suggests that the tetrahedral Zn-N bond is slightly less compressible than the octahedral bond. By fitting the calculated band gap, the first and second order pressure coefficients for the direct band gap ofthe Zn3N2 were determined to be 1.18×10−2 eV/GPa and −2.4×10−4 eV/(GPa)2, respectively. Based on the Mulliken population analysis, Zn3N2 was found to have a higher covalent character with increasing pressure. As temperature increases, heat capacity, enthalpy, product of temperature and entropy increase, whereas the Debye temperature and free energy decrease. The present study leads to a better understanding of how Zn3N2 materials respond to compression.  相似文献   

17.
The EPR g factors g// and g for Ti3+ ions at the trigonal octahedral Li+ sites of LiNbO3 and LiTaO3 crystals are calculated from the third-order perturbation formulas of g factors for 3d1 ion in trigonal symmetry. In the calculations, the crystal-field parameters are obtained from the structural data by using the superposition model. The calculated values are in reasonable agreement with the observed values. The results are discussed.  相似文献   

18.
Abstract

High-pressure neutron diffraction experiments have been performed at room temperature on a powdered sample of the perovskite type-layer compound (CD3ND3)2MnCl4. A phase transition from the orthorhombic room-temperature phase (ORT) to a new high-pressure phase (HP) is demonstrated at 20.5 ± 0.2 kbars. A monoclinic unit cell with lattice parameters a = 6.824 (5) Å; b = 7.409 (8) Å c = 17.126 (12) Å and β = 82.94(9)° has been inferred for the HP phase, consistent with a two-dimensional perovskite-type structure. The HP phase appears to be much more compact than ORT; it is characterized, in particular, by an important compression (?10%) of the inter-layer distance. Space groups P2/c or P21/c consistent with the experimental data have been deduced for the HP phase, after group theoretical considerations based on shear transformation and order-disorder mechanisms.  相似文献   

19.
Abstract

Effect of high pressure on the crystal structure of rhombohedral NaNO3 was investigated by X-ray diffraction of single crystals mounted in a miniature diamond-anvil cell on synchrotron radiation source. Diffraction intensity measurements were made at three pressures across a suggested transition pressure 4.3 GPa. No change was observed in an overall distribution of reflections in the reciprocal space with increasing pressure, but there was a systematic variation in diffraction intensity for particular groups of reflections. An analysis based on the structure factor calculation showed that a structure change induced by pressure is mainly a rotation of the nitrate groups in the alternate layers along the threefold axis in opposite directions. Least-squares refinement of the atomic positional parameters yielded the angle of the rotation to be 4.3 and 7.0 deg at pressures of 4.4 and 5.0 GPa, respectively. It has also been shown that the positions of the sodium and nitrogen atoms are slightly displaced along the axis, resulting in the formation of dipoles in the high pressure phase.  相似文献   

20.
When heated by high-energy electron beam (EB), SiC can decompose into C and Si vapor. Subsequently, Si vapor reacts with metal oxide thin film on substrate surface and formats dense SiO2 thin film at high substrate temperature. By means of the two reactions, SiC/SiO2 composite thin film was prepared on the pre-oxidized 316 stainless steel (SS) substrate by electron beam-physical vapor deposition (EB-PVD) only using β-SiC target at 1000 °C. The thin film was examined by energy dispersive spectroscopy (EDS), grazing incidence X-ray asymmetry diffraction (GIAXD), scanning electron microscopy (SEM), atomic force microscopy (AFM), backscattered electron image (BSE), electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infra-red (FT-IR) spectroscopy. The analysis results show that the thin film is mainly composed of imperfect nano-crystalline phases of 3C-SiC and SiO2, especially, SiO2 phase is nearly amorphous. Moreover, the smooth and dense thin film surface consists of nano-sized particles, and the interface between SiC/SiO2 composite thin film and SS substrate is perfect. At last, the emissivity of SS substrate is improved by the SiC/SiO2 composite thin film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号