首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We clarified the stability limit of phase Egg, AlSiO3OH, a candidate for water reservoir in the siliceous sediment of slabs in the transition zone conditions by in situ X-ray observation using high energy X-ray from synchrotron radiation source of SPring-8. Phase Egg is stable at least up to 1625 °C at 17 GPa. We observed decomposition of phase Egg into δ-AlOOH and stishovite at pressures greater than 23 GPa at temperatures below 1200 °C. No water release occurs associated with the decomposition. At temperatures above 1200 °C at 23 GPa, we observed decomposition of phase Egg into corundum+stishovite+fluid. We also determined the phase boundary of the decomposition reaction of δ-AlOOH to corumdum+fluid based on the in situ X-ray diffraction at high pressure and temperature.  相似文献   

2.

The phase relations and equations of state of ZrO 2 and HfO 2 high-pressure polymorphs have been investigated by means of in situ observation using multi-anvil type high-pressure devices and synchrotron radiation. Baddeleyite (monoclinic ZrO 2 ) transforms to two distorted fluorite (CaF 2 )-type phases at 3-4 GPa depending on temperature: an orthorhombic phase, orthoI, below 600 °C and a tetragonal phase, which is one of the high-temperature forms of ZrO 2 , above 600 °C. Both orthoI and tetragonal phases then transform into another orthorhombic phase, orthoII, with a cotunnite (PbCl 2 )-type structure above 12.5 GPa and the phase boundary is almost independent of temperature. OrthoII is stable up to 1800 °C and 24 GPa. In case of HfO 2 , orthoI is stable from 4 to 14.5 GPa below 1250-1400 °C and transforms to the tetragonal phase above these temperatures. OrthoII of HfO 2 appears above 14.5 GPa and is stable up to 1800 °C at 21 GPa. The unit cell parameters and the volumes of these high-pressure phases have been determined as functions of pressure and temperature. The orthoI/tetragonal-to-orthoII transition of both ZrO 2 and HfO 2 is accompanied by about 9% volume decrease. The bulk moduli of orthoII calculated using Birch-Murnaghan's equations of state are 296 GPa and 312 GPa for ZrO 2 and HfO 2 , respectively. Since orthoII of both ZrO 2 and HfO 2 are quenchable to ambient conditions, these are candidates for super-hard materials.  相似文献   

3.
The phase diagram of zirconium metal has been studied using synchrotron X-ray diffraction and time-of-flight neutron scattering at temperatures and pressures up to 1273 K and 17 GPa. The equilibrium phase boundary of the α-ω transition has a dT/dP slope of 473 K/GPa, and the extrapolated transition pressure at ambient temperature is located at 3.4 GPa. For the ω-β transition, the phase boundary has a negative dT/dP slope of 15.5 K/GPa between 6.4 and 15.3 GPa, which is substantially smaller than a previously reported value of −39±5 K/GPa in the pressure range of 32-35 GPa. This difference indicates a significant curvature of the phase boundary between 15.3 and 35 GPa. The α-ω-β triple point was estimated to be at 4.9 GPa and 953 K, which is comparable to previous results obtained from a differential thermal analysis. Except for the three known crystalline forms, the β phase of zirconium metal was found to possess an extraordinary glass forming ability at pressures between 6.4 and 8.6 GPa. This transformation leads to a limited stability field for the β phase in the pressure range of 6-16 GPa and to complications of high-temperature portion of phase diagram for zirconium metal.  相似文献   

4.
Abstract

Raman scattering, visible absorption, and optical observation studies have been made on polycrystalline potassium superoxide (KO2) in a diamond anvil cell as a function of pressure and temperature. Three new phases are observed. With increasing pressure at 298 K, KO2 transforms from the well known modified CaC2 structure (Phase II), to two new phases (VII, and VIII). The transformation from III to VII occurs at about 3.2GPa. Phase VII transforms to phase VIII at about 4.4GPa. However, in some samples phase VII does not occur and phase II transforms directly into phase VIII at about 4.2 GPa. These structural transformations are indicated by marked changes in the Raman spectrum. The transitions out of phase II are also marked by a discontinuous red shift in the optical absorption edge. From optical observations we have also determined the pressure and temperature dependence of the transitions from phase II to the high temperature cubic (B1) phase I as well as from the high pressure phases VII and VIII to a new nonbirefringent phase IX. This new phase IX has the cubic B2 (CsCl) structure as is shown by our recent X-ray synchrotron experiments.  相似文献   

5.

We report on the observation of precursor effects of the rhombohedral-to-cubic phase transition in Indium Selenide (InSe) with several experimental techniques. The pressure at which these precursor defects are first observed depends on the sensitivity of the experimental technique. In transport measurements, which are very sensitive to low defect concentrations, precursor effects are observed 5 to 6 GPa below the phase transition pressure whereas in X-ray diffraction measurements precursor effects are only observed 2 GPa below the phase transition pressure. We report optical absorption measurements, in which the precursor effects are shown by the growth and propagation of dark linear defects appearing 3 GPa below the phase transition pressure. On the base of a simple model of the stress field around edge dislocations, we attribute the darkening of the InSe samples to local phase transitions to a high-pressure modification along linear dislocations. These results agree with room-pressure and high-pressure Raman spectra of samples compressed up to 7-8 GPa, which show new phonon lines not corresponding to the low-pressure phase.  相似文献   

6.
Abstract

The phase diagram and equations of state of BaSO4, were determined up to 29 GPa and 1000 K in a resistance-heating type diamond anvil cell. At room temperature, barite is the stable form of BaSO4 which undergoes a reversible phase transition at 10 GPa. The high-pressure form is tentatively determined to be triclinic. At high temperature, a similar phase transition takes place in BaSO4, but at a pressure higher than that at room temperature. Our results indicate that the phase boundary of the two polymorphs in BasO4 has a positive slope (dT/dP) of 90 K/GPa. The equations of state for both barite and its high-pressure phase are reported.  相似文献   

7.
Abstract

Synchrotron x-ray diffraction experiments at low temperatures have revealed that even at 35K the molecular dissociation starts taking place at PS=21.5 and finishes at Pf=26.1GPa. An extrapolation of the phase boundary thus obtained at several temperatures intersects the T=4K line at PS=21.6 and Pf=26.3GPa. This result, inferring the monatomic structure to be realized at P=30GPa and T=4K, leads to a discrepancy against the recent Mössbauer result obtained at the same point in the P-T phase diagram.  相似文献   

8.

We report about recent X-ray absorption spectroscopy (XAS) measurements on solid and liquid AgI under high pressure. The structural behaviour of AgI has been investigated to pressures P~4.3 GPa at room temperature and to P~1.8 GPa at 1100 K. The high temperature/high pressure conditions have been obtained by means of a large-volume press of the Paris-Edinburgh type, coupled with a 10 mm boron/epoxy biconical gasket. The absorption spectra have been collected in transmission mode, both at the K-edge of Ag and I, and the samples have been characterized in situ by energy scanning X-ray diffraction at fixed angles. Our XAS results for solid AgI are compatible with previous X-ray diffraction measurements. For liquid AgI, we observe a slight change in the intensity and a shift in the frequency of the XAS oscillations with respect to what obtained in the case of the ambient pressure liquid.  相似文献   

9.
A laser-heated sample in a diamond anvil cell and synchrotron X-ray radiation was used to carry out structural characterization of the phase transformation of Fe2O3 at high pressures (30-96 GPa) and high temperature. The Rh2O3(II) (or orthorhombic perovskite) structure transforms to a new phase, which exhibits X-ray diffraction data that are indicative of a CaIrO3-type structure. The CaIrO3-type structure exhibited an orthorhombic symmetry (space group: Cmcm) that was stable at temperatures of 1200-2800 K and pressure of 96 GPa (the highest pressure used). Unambiguous assignment of such a structure requires experimental evidence for the presence of two Fe species. Based on the equation of state of gold, the phase boundary of the CaIrO3-type phase transformation was P (GPa)=59+0.0022×(T−1200) (K).  相似文献   

10.
Abstract

Stabilities of SiO2 stishovite and CaSiO3 perovskite were studied up to 120 GPa, using diamond-anvil type high pressure apparatus combined with a laser heating system. High pressure in situ X-ray observation clarified that stishovite distorts into slightly dense CaCl2-type structure above 80 GPa while cubic perovskite type CaSiO3 remains stable up to 120 GPa.  相似文献   

11.
Abstract

High purity selenium samples were melted under high pressure (≤6.4 GPa) and quenched at various rates ranging from 2 K s?1 to 500 K s?1 and the recovered material was examined by X-ray diffraction and electron microscopy. In the entire range of pressure and cooling rate, the melt was found to solidify into a polycrystalline aggregate of the trigonal phase of selenium. The samples obtained by slow cooling of the melt at 6.4 GPa contain, in addition to crystalline phase, regions which appear to be amorphous.  相似文献   

12.
Abstract

The crystal structure and compressibility of uranium has been determined by energy dispersive X-ray measurements in a diamond-cell apparatus up to pressures of 100 GPa. The alpha phase of uranium remains stable up to the highest pressures as suggested by earlier shock-Hugoniot data. An equation-of-state for alpha-uranium derived from both types of data implies that this phase also remains stable up to 2500 K at Hugoniot pressures of 100 GPa.  相似文献   

13.
The phase transformations of titanium metal have been studied at temperatures and pressures up to 973 K and 8.7 GPa using synchrotron X-ray diffraction. The equilibrium phase boundary of the α-ω transition has a dT/dP slope of 345 K/GPa, and the transition pressure at room temperature is located at 5.7 GPa. The volume change across the α-ω transition is ΔV=0.197 cm3/mol, and the associated entropy change is ΔS=0.57 J/mol K. Except for ΔV, our results differ substantially from those of previous studies based on an equilibrium transition pressure of 2.0 GPa at room temperature. The α-ω-β triple point is estimated to be at 7.5 GPa and 913 K, which is comparable with previous results obtained from differential thermal analysis and resistometric measurements. An update, more accurate phase diagram is established for Ti metal based on the present observations and previous constraints on the α-β and ω-β phase boundaries.  相似文献   

14.
ABSTRACT

The pressure effect on the electromotive force (EMF) of a Pt13Rh–Pt (type R) thermocouple was examined to determine the temperature measurement accuracy of solid pressure medium apparatuses in high-pressure experiments. Single-wire EMFs were measured up to pressure of 13?GPa and temperature of 1173?K with a Kawai-type multi-anvil apparatus for Pt13Rh and Pt based on the single-wire method. The pressure conditions along the wires were evaluated by in situ X-ray diffraction using synchrotron X-ray radiation. The pressure effect of the Seebeck coefficients of Pt13Rh and Pt were determined by the analysis of the single-wire EMFs and pressure–temperature profiles along the wires and was virtually consistent with those determined in previous studies at lower pressures and temperatures. For type R thermocouple, the difference between the nominal and real temperatures was determined to be as large as –75?K at 13?GPa and 873?K.  相似文献   

15.
The high pressure behavior of gallium phosphide, GaP, has been examined using the synchrotron X-ray diffraction technique in a diamond anvil cell up to 27?GPa and 900?K. The transition from a semiconducting to a metallic phase was observed. This transition occurred at 22.2?GPa and room temperature, and a negative dependence of temperature of this transition was found. The transition boundary was determined to be P (GPa)?=?22.6???0.0014?×?T (K).  相似文献   

16.
Abstract

The DAC X-ray power photograph method was employed for studing the phase transition of samarium up to 26.3 GPa. The experimental results show that the dhcp and fcc high pressure phase of Sm appeared at about 4.0 and 12.5 GPa and room temperature respectively. The dhcp phase was kept until 19.6 GPa. A model for Sm-type -? dhcp -? fcc phase transition is provided in this paper.  相似文献   

17.
Abstract

Equation of state and phase transformations of thorium metal have been investigated to 300 GPa at 300 K in a diamond anvil cell using energy dispersive X-ray diffraction employing synchrotron source. Phase transformations in the 70–100 GPa range indicative of 5f-electron bonding are observed and thorium metal is isostructural with its 4f counterpart cerium at ultra high pressures. The measured static equation of state of thorium to 300GPa (volume fraction V/V o = 0.40) at 300K is given. At high pressures, the sd to f electronic transfer has significant influence on the measured equation of state of thorium.  相似文献   

18.
Numerous recent developments in diamond-cell techniques are making possible a growing range of studies of the electronic and magnetic properties of materials to megabar pressures. We review recent advances in this area, including magnetic susceptibility, electrical conductivity, and synchrotron-based spectroscopic techniques. Highly sensitive magnetic susceptibility techniques have allowed the first observations of superconductivity at megabar pressures, including the observation of a Tc of 17 K in sulfur at 160 GPa, and a nearly pressure-independent Tc to above 230 GPa. The technique has recently been extended to allow measurements of the magnetic properties of ferromagnetic substances. Advances in the direct measurement of electrical conductivity using miniaturized leads have permitted measurements on H2O and Xe to above 100 GPa. Pressure-induced high-spin to low-spin transitions have been examined in FeS and FeO using new high-resolution X-ray emission techniques. New high-pressure inelastic scattering methods, including nuclear inelastic scattering techniques, have been used to determine the phonon density of states of Fe to above 150 GPa. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
S. Kurita  S. Ohta  T. Sekiya 《高压研究》2013,33(2):319-323

Pressure-induced phase transition of anatase titanium dioxide was investigated by Raman, absorption spectroscopy and X-ray diffraction. The change in Raman and absorption spectra with pressure revealed that the transition from anatase to high pressure phase with f -PbO 2 structure (TiO 2 -II) occurred in the pressure range of 4.0-4.6 GPa for a single crystal. The X-ray powder diffraction patterns indicate the presence of superstructural lattice of anatase at pressures more than 3 GPa. The superstructure of anatase disappears on the release of the pressure. A sluggish transition to the high pressure phase is also observed. The anatase coexists with the high pressure phase at 5.2 GPa. The difference in the results between optical spectroscopy (single crystal) and X-ray diffraction (powder) will be due to crystalinity of the sample.  相似文献   

20.
The high-pressure behaviour of zinc sulphide, ZnS, has been investigated, using an in situ X-ray powder diffraction technique in a diamond anvil cell, at pressures and temperatures up to 35 GPa and 1000 K, respectively. The pressure-induced phase transition from a zincblende (B3) to a rocksalt (B1) structure was observed. This transition occurred at 13.4 GPa and at room temperature, and a negative dependence on temperature for this transition was confirmed. The transition boundary was determined to be P (GPa) = 14.4 ? 0.0033 × T (K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号