首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study in a systematic way the complex sequence of the high-pressure phases of silicon obtained upon compression by combining an accurate high-dimensional neural network representation of the density-functional theory potential-energy surface with the metadynamics scheme. Starting from the thermodynamically stable diamond structure at ambient conditions we are able to identify all structural phase transitions up to the highest-pressure fcc phase at about 100 GPa. The results are in excellent agreement with experiment. The method developed promises to be of great value in the study of inorganic solids, including those having metallic phases.  相似文献   

2.
应用第一性原理密度泛函理论计算了MgO在零温(0K)下和0~200GPa静水压范围内的晶体结构和弹性模量,以及B1、B4和B8相结构的MgO的声速随压力的变化。利用准简谐近似下的Debye模型,通过拟合三阶Birch-Murnaghan物态方程模拟了高温效应并对三个相在高温高压下的相稳定性做了研究。本工作的计算结果与前人的理论和实验结果符合较好,说明第一性原理结合准简谐Debye模型能够比较准确的模拟矿物如MgO在高温高压下的热力学性质。  相似文献   

3.
MgO高温高压特性及相变的第一性原理研究   总被引:1,自引:1,他引:0  
应用第一性原理密度泛函理论计算了MgO在零温(0K)下和0~200GPa静水压范围内的晶体结构和弹性模量,以及B1、B4和B8相结构的MgO的声速随压力的变化。利用准简谐近似下的Debye模型,通过拟合三阶Birch-Murnaghan物态方程模拟了高温效应并对三个相在高温高压下的相稳定性做了研究。本工作的计算结果与前人的理论和实验结果符合较好,说明第一性原理结合准简谐Debye模型能够比较准确的模拟矿物如MgO在高温高压下的热力学性质。  相似文献   

4.
 提出了一种在高温高压极端条件下合成富硼稀土硼化物NdB6的新方法,即以稀土氧化物Nd2O3为钕源与单质硼反应的方法获得了稀土六硼化物NdB6。并对合成产物进行了粉末X射线衍射分析。结果表明在配比为Nd:B=1:6时,压力为4.0 GPa、温度为1 600 ℃、反应时间为15 min的条件下,获得了单相性非常好的NdB6。高温高压合成NdB6方法具有反应条件易达到、合成时间短、反应产物单相性好等优点。其XRD结果表明该合成产物为立方结构,晶格常数为a=0.417 nm。  相似文献   

5.
周大伟  卢成  李根全  宋金璠  宋玉玲  包刚 《物理学报》2012,61(14):146301-146301
采用第一原理方法计算了高压下金属Ba的三个高压相 Ba-I, Ba-Ⅱ和Ba-V的稳定性及热动力学性质.结果表明, Ba的三个高压相在0 K时在其压力范围内都是动力学和力学稳定的;但随压力增加, Ba-I 和Ba-Ⅱ 的声子谱频率出现异常"软化",而Ba-V则出现"硬化".虽然 Ba-Ⅱ 和 Ba-V 同为六方密堆(hcp)结构,计算表明它们在高压下表现出了不同的弹性各向异性.计算同时发现 Ba-Ⅱ 在更高的压力下仍满足力学稳定条件,但声子谱有虚频存在, 表明动力学失稳是Ba-Ⅱ在压力下向Ba-I!V相转变的原因. 计算和比较了同为六方密堆(hcp)结构的Ba-Ⅱ和Ba-V在高压下的声速、 德拜温度、体模量、剪切模量等力学和热学性质, 展现了金属Ba在压力下的稳定机制和热动力学性质.  相似文献   

6.
金属氢研究新进展   总被引:2,自引:0,他引:2  
陈良辰 《物理》2004,33(4):261-265
简要介绍了金属氢的研究意义和应用前景 ,详细评述了有关的高压实验方法和最近的研究成果及进展 ,特别是固体氢的相图、结构和相变 .近十多年来 ,随着超高压技术的发展 ,已能在金刚石对顶砧 (DAC)上产生30 0GPa的静态压力 ,并可进行高压原位实验研究 .对固体氢进行了高压拉曼、同步辐射X射线、光反射和吸收、同步辐射红外光谱等一系列高压物性和相变研究 .从而确定了固体氢的三个相 ,并提出了可能的相结构 .  相似文献   

7.
Abstract

We report results of high-pressure experiments with a new diamond-anvil cell in a monochromatic, high-resolution x-ray scattering geometry with alinear position-sensitive detector. The experiments make possible the study of factors controlling line widths of diffraction profiles at pressures in the 100 GPa range, and demonstrate the potential for the use of line profile analysis and Rietveld refinement techniques with high-pressure powder diffraction data. Combined data for various materials indicate that relative contributions to linewidths due to particle size, intrinsic material strength, pressure and state of stress in the sample can be resolved. With light rare-gas solids as pressure-transmitting media, measured FWHMs of the order 0.03? 2 θ corresponding to resolution Δd/d of 2.5 × 10?3 for 2θ~10-15? are reported. Formation of a high pressure phase appears to involve growth of submicron domains, judging from substantially broadened diffraction peaks under quasihydrostatic conditions. Detailed analysis of complex, non-quenchable high-pressure phases will likely require annealing techniques such as thermal cycling at pressure.

Presented at the IUCr Workshop on ‘Synchrotron Radiation Instrumentation for High Pressure Crystallography’, Daresbury Laboratory 20-21 July 1991  相似文献   

8.
Isoelectronic BC x N compounds have been researched widely. However, electron-deficient boron-rich B-C-N solids have also attracted much interest both theoretically and experimentally. In this paper, we introduce the synthesis, theoretical prediction, and physical properties of crystalline ternary B-C-N compounds. Our recent work reveals that the novel B-C-N materials may have a wide variety of crystal structures with different characteristics.   相似文献   

9.
Clarifying the phase transformation process and mechanism of single-crystal silicon induced by high pressure is essential for preparation of new silicon phases. Although many previous researches have focused in this area, the volume of high-pressure phases and the duration of phase transformation are still unclear. In this paper, the volume change and the duration of phase transformation from Si-II phase into Si-XII/Si-III phases were investigated quantitatively by introducing a holding process in the unloading stage of a nanoindentation test. Experimental results indicate that the high-pressure phase volume is dependent strongly on the maximum indentation load and independent of the loading/unloading rate and the holding time at the maximum indentation load, while phase transformation duration is independent of the aforementioned experimental parameters. By analyzing the results, a critical volume of Si-XII/Si-III phases was identified which determines the occurrence of sudden phase transformation, and a modified nucleation and growth mechanism of high-pressure phases was proposed. These results provide new insights into high-pressure phase transformations in single-crystal silicon.  相似文献   

10.
Yuan-Yuan Jin 《中国物理 B》2022,31(11):116104-116104
The recent discovery of the novel boron-framework in boron-rich metal borides with complex structures and intriguing features under high pressure has stimulated the search into the unique boron-network in the metal monoborides or boron-deficient metal borides at high pressure. Herein, based on the particle swarm optimization algorithm combined with first-principles calculations, we thoroughly explored the structural evolution and properties of TiB up to 200 GPa. This material undergoes a pressure-induced phase transition of $Pnma$ $\to $ $Cmcm$ $\to $ $Pmmm$. Besides of two known phases $Pnma$ and $Cmcm$, an unexpected orthorhombic $Pmmm$ structure was predicted to be energetically favored in the pressure range of 110.88-200 GPa. Intriguingly, the B covalent network eventually evolved from a one-dimensional zigzag chain in $Pnma$-TiB and $Cmcm$-TiB to a graphene-like B-sheet in $Pmmm$-TiB. On the basis of the microscopic hardness model, the calculated hardness ($H_{\rm v}$) values of $Pnma$ at 1 atm, $Cmcm$ at 100 GPa, and $Pmmm$ at 140 GPa are 36.81 GPa, 25.17 GPa, and 15.36 GPa, respectively. Remarkably, analyses of the density of states, electron localization function and the crystal orbital Hamilton population (COHP) exhibit that the bonding nature in the three TiB structures can be considered as a combination of the B-B and Ti-B covalent interactions. Moreover, the high hardness and excellent mechanical properties of the three TiB polymorphs can be ascribed to the strong B-B and Ti-B covalent bonds.  相似文献   

11.
Abstract

α-Quartz was compressed at room temperature in a diamond-anvil cell without a medium to maximum pressures of 31 to 213 GPa and was studied by energy-dispersive synchrotron X-ray diffraction. Broad peaks observed in a previous high-pressure diffraction study of silica glass are evident in the present study of quartz compression, providing in situ confirmation of pressure-induced amorphization above 21 GPa. The 21-GPa crystalline-crystalline (quartz 1–11) transformation previously observed on quasihydrostatic compression of quartz is found to also occur under the current nonhydrostatic conditions, at the identical pressure. With nonhydrostatic compression, however, new sharp diffraction lines are observed at this pressure. The measurements show the coexistence of at least one amorphous and two crystalline phases above 21 GPa and below 43 GPa. The two crystalline phases are identified as quartz II and a new, high-pressure silica phase. The high-pressure phases, both crystalline and amorphous, can be quenched to ambient conditions from a maximum pressure of 43 GPa. With compression above 43 GPa, the diffraction pattern from quartz II is lost and the second crystalline phase persists to above 200 GPa.  相似文献   

12.
He J  Wu E  Wang H  Liu R  Tian Y 《Physical review letters》2005,94(1):015504
First-principles calculations are used to investigate ionicities of boron-boron bonds in B(12) icosahedra. It is observed that the geometrical symmetry breaking of B(12) icosahedra results in the spatial asymmetry of charge density on each boron-boron bond, and further in the ionicity of B(12) icosahedra. The results calculated by a new ionicity scale, a population ionicity scale, indicate that the maximum ionicity among those boron-boron bonds is larger than that of boron-nitrogen bonds in the III-V compound cubic BN. It is of great importance that such an ionicity concept can be extended to boron-rich solids and identical atom clusters.  相似文献   

13.
A new variant of the method of finding the equation of state in the Mie–Grüneisen form is presented. It is based only on high-pressure isotherms of solids. Using this procedure, the semiempirical equation of state and shock adiabats of solids may be found at high pressures and high temperatures. The method is tested on periclase MgO within the range of shock pressures up to 300–500 GPa.  相似文献   

14.
Summary Free-energy, entropy and volume differences between face-centered and body-centered cubic structures have been evaluated for model rare gas and alkali metal crystals by using the method of overlapping distributions. Stable phases are predicted in agreement with the behaviour of real materials in the regions of validity of classical mechanics and in agreement with the results of previous dynamical-simulation studies of crystal nucleation from the melt and of polymorphic transformations. The existence of a stable b.c.c. phase at high pressure and temperatures is predicted in this way for Lennard-Jones solids, while no high-pressure f.c.c. phase is expected for model Rb and Cs systems. We also show the possibility of making calculations of free-energy barriers to displacive crystalline transformations along a prescribed trajectory in configuration space. Work supported by the U.S. Department of Energy, Istituto per la Ricerca Scientifica e Tecnologica, Trento, and Gruppo Nazionale di Struttura della Materia del C.N.R., Italy.  相似文献   

15.
A study of the high-pressure anisotropy of MgO was conducted using first-principles calculations based on density functional theory within the generalized gradient approximations. The pressure dependence of the elastic stiffness coefficients and the anisotropy parameters, in both B1 and B2 phases, shows that for high-hydrostatic compression the easiest deformation is the shear along (100) plane and the the material's response to deformation and to shearing strains is quite the same. According to the calculations of the velocities of propagation of elastic waves, we deduced that MgO develop an elastic anisotropy, especially, in the B1 phase. We present the B2 phase elastic properties which are not already studied under high pressure.  相似文献   

16.
高压下尼龙1010-单壁碳纳米管复合材料的结晶行为   总被引:1,自引:0,他引:1       下载免费PDF全文
 采用XKY-6×1200MN型六面顶压机,在不同温度、压力条件下处理30 min后制备了尼龙1010(PA1010)-单壁碳纳米管(SWCNT)复合材料的高压结晶样品,通过X射线衍射(XRD)、差热分析仪(DSC)、扫描电子显微镜(SEM)、透射电子显微镜(TEM),研究了高压处理样品的结晶行为、结构变化及形貌特征。结果表明:在1.0~2.5 GPa压力下,属于高压熔体结晶;在3.0和4.5 GPa压力下属于高压退火处理;高压结晶或高压退火均有助于聚合物片层晶体的增厚,并且高压熔体结晶的增厚效果优于高压退火处理。XRD结果表明,PA1010的三斜晶型在高压处理后保持不变,高压熔体结晶或高压退火都可以使(100)晶面和(010)晶面间距减小,即高压处理致使聚合物分子链紧密堆积。DSC结果表明:在高压熔体结晶过程中,升高压力和温度可以得到片层厚度较大的PA1010晶体;在2.0 GPa、350 ℃下获得的高压结晶样品的熔点和结晶度最高,分别达到208.5 ℃和64.6%。SEM和TEM结果表明:与常压结晶样品相比,高压结晶样品内部出现c轴厚度超过150 μm的大尺寸晶体;SWCNT与PA1010基体之间形成相互穿插的网络结构,刚性的SWCNT作为高压成核剂促进PA1010晶体生长和增厚。  相似文献   

17.
郭静  孙力玲 《物理学报》2015,64(21):217406-217406
在凝聚态物理研究中, 压力作为对物质状态调控的独立变量得到了广泛的应用. 压力对发现物质的新现象、新规律及对其形成机理的理解和对相关理论的验证起到了重要的作用, 尤其在超导电性的研究中取得了巨大的成功. 文章简要的介绍了通过利用压力手段对具有相分离结构的碱金属铁硒基超导体AxFe2-ySe2 (A=K, Rb, Tl/Rb)开展的系列研究所取得的实验结果, 以及其他一些文献中报道的在此方面的主要实验与理论研究工作, 包括压力导致的超导再进入现象和其产生的量子临界机理、其特有的反铁磁绝缘体相在该类超导体实现超导电性中的作用、化学负压力对超导电性的影响、构成该类超导体的反铁磁序与其寄居的超晶格的关系等.  相似文献   

18.
We report here high-pressure x-ray diffraction (XRD) studies on tellurium (Te) at room temperature up to 40 GPa in the diamond anvil cell (DAC). The XRD measurements clearly indicate a sequence of pressure-induced phase transitions with increasing pressure. The data obtained in the pressure range 1 bar to 40 GPa fit five different crystalline phases out of Te: hexagonal Te (I) → monoclinic Te(II) → orthorhombic Te (III) → Β-Po-type Te(IV) → body-centered-cubic Te(V) at 4, 6.2, 11 and 27 GPa, respectively. The volume changes across these transitions are 10%, 1.5%, 0.3% and 0.5%, respectively. Self consistent electronic band structure calculations both for ambient and high pressure phases have been carried out using the tight binding linear muffin tin orbital (TB-LMTO) method within the atomic-sphere approximation (ASA). Reported here apart from the energy band calculations are the density of states (DOS), Fermi energy (E f) at various high-pressure phases. Our calculations show that the ambient pressure hexagonal phase has a band gap of 0.42 eV whereas high-pressure phases are found to be metallic. We also found that the pressure induced semiconducting to metallic transition occurs at about 4 GPa which corresponds to the hexagonal phase to monoclinic phase transition. Equation of state and bulk modulus of different high-pressure phases have also been discussed.  相似文献   

19.
In the present paper, a temperature-dependent equation of state (EOS) of solids is discussed which is found to be applicable in high-pressure and high-temperature range. Present equation of state has been applied in 18 solids. The calculated data are found in very good agreement with the data available from other sources.  相似文献   

20.
High resolution electron microscopy and analytical electron microscopy wereused to characterize mechanically alloyed Nd16Fe76B8 which were previously identified as isotropic and anisotropic magnets. In both samples, two rare earth-oxide phases, NdO and Nd2O3, and a boron-rich phase were observed. Two grain boundary phases, the NdFe2-phase and a non-equilibrium Nd-rich phase, were clearly identified in the isotropic samples and seem to be responsible for their higher coercivity. Due to the alignment of the grains, the anisotropic materials possess a better squareness of the B-H loop and a higher energy product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号