首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
The first aminocatalyzed α‐alkylation of α‐branched aldehydes with benzyl bromides as alkylating agents has been developed. Using a sterically demanding proline derived catalyst, racemic α‐branched aldehydes are reacted with alkylating agents in a DYKAT process to give the corresponding α‐alkylated aldehydes with quaternary stereogenic centers in good yields and high enantioselectivities.  相似文献   

3.
A substitute for the Darzens glycidic ester synthesis for converting unsaturated ketones or aldehydes into the homologated β,γ- or α,β-unsaturated aldehydes employing sulfur ylides is described. The carbonyl group is converted into the unsaturated oxirane which is then rearranged to the new aldehyde. High yields of isomerically pure aldehydes are available by this method and the process is of practical importance in the conversion of β-ionone into the β-C14-aldehyde, a key intermediate in the Isler synthesis of vitamin A. The efficient preparation of α- and β-cyclocitral by the novel process is also described.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
The asymmetric fluorination of azolium enolates that are generated from readily available simple aliphatic aldehydes or α‐chloro aldehydes and N‐heterocyclic carbenes (NHCs) is described. The process significantly expands the synthetic utility of NHC‐catalyzed fluorination and provides facile access to a wide range of α‐fluoro esters, amides, and thioesters with excellent enantioselectivity. Pyrazole was identified as an excellent acyl transfer reagent for catalytic amide formation.  相似文献   

12.
Following the light: Photoredox catalysis along with aminocatalysis have proved to be the right combination for one of the most challenging asymmetric transformation in organic synthesis: the direct intermolecular α‐alkylation of aldehydes.

  相似文献   


13.
14.
15.
The asymmetric fluorination of azolium enolates that are generated from readily available simple aliphatic aldehydes or α‐chloro aldehydes and N‐heterocyclic carbenes (NHCs) is described. The process significantly expands the synthetic utility of NHC‐catalyzed fluorination and provides facile access to a wide range of α‐fluoro esters, amides, and thioesters with excellent enantioselectivity. Pyrazole was identified as an excellent acyl transfer reagent for catalytic amide formation.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号