首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The deep red diaquoperoxotitanium dipicolinate [TiO2(C7H3O4N) (H2O)2]2H2O crystallises in a pleochroic triclinic and a nonpleochroic orthorhombic modification. The structure of the former has been reported earlier. The structure of the latter, described in this paper, has been determined from X-ray diffractometer data and refined to R = 0.034. In both forms the complex occurs as the free acid, but the modes of packing are completely different. Bond lengths and angles agree closely. As in the other peroxotitanium(IV) chelate structures so far determined, titanium has an approximately pentagonal bipyramidal coordination with the peroxo group and the chelate ligand occupying equatorial sites and the waters forming the apices. The relationship proposed earlier between the basicity of the ligands and the bond lengths and colours of the related compounds is substantiated. The final difference Fourier maps obtained with normal and modified refinement procedures clearly reveal bonding electron densities. They indicate a pentagonal bipyramidal sp3d3 hybridisation of titanium with bent Ti-Operoxo bonds, again in agreement with the triclinic form and other peroxotitanium chelates.  相似文献   

2.
Crystal Structure of a Dinuclear Peroxotitanium(IV)-Nitrilotriacetate Complex The structures of four peroxotitanium(IV) dipicolinates, with colours ranging from deep red to yellow orange, have been reported earlier, and a correlation between their colours and the variations of certain bond lengths has been proposed. This paper describes the pale yellow dinuclear peroxotitanium nitrilotriacetate complex Na4[Ti2O5(C6H6O6N)2]11 H2O. The monoclinic structure, space group B2/b, contains 25 independent non-hydrogen atoms and 17 hydrogen atoms. It has been determined from diffractometer data and refined to R = 3.2%. Titanium is again coordinated approximately pentagonal-bipyramidally. The μ-oxygen bridge occupies an axial position. The short (1.819 Å), nearly linear Ti–O–Ti bonds show double bond character. The titaniumperoxide bonds, however, are relatively long, thus confirming the rule proposed before: the more basic the axial ligands, the higher is the frequency of the absorption band, the longer are the Ti-peroxide bonds and the shorter are the axial distances. This is confirmed by electron density maps, which are to be discussed elsewhere in detail, showing bent Ti-peroxide bonds enclosing an angle of about 70° and a strong electron bridge on the μ-oxygen bond. Hydrogen bonding and the packing of the complexes is discussed.  相似文献   

3.
A novel sol–gel technique using the PTA (peroxo titanic acid) sol as precursor for the fabrication of TiO2 photocatalytic thin film is introduced in this paper. The peroxo titanic acid sol was synthesized from titanyl sulfate (TiOSO4), ammonia and peroxide solution (H2O2). The transparent and porous TiO2 thin film was prepared via a sol–gel technique using PTA sol and polyethylene glycol (PEG) as precursor and template, respectively. The TiO2 thin film samples were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible spectrophotometry (UV–vis), X-ray photoelectron spectrum (XPS) and thermogravimetry and differential thermal analysis (TG-DTA) technique. The PTA sol displayed amorphous TiO2 below 100 °C. The anatase phase formed at 200 °C to 700 °C. The crystallinity of anatase phase was improved with increasing temperature. The anatase crystals on the surface of TiO2 film were strip-like, the size being about 100 nm in length and 40 nm in diameter. Addition of PEG to the PTA sol developed porous structures in the film and changed the size and shape of the particles. The surface of the film contained Ti, O and C elements and Na element that diffused into the film from the glass substrate. The photocatalytic performance of TiO2 film was tested for the degradation of 10 mg/L methyl orange. The degradation of methyl orange solution reached 98.9% after irradiated for 180 min under UV light. The porous TiO2 thin film exhibited high photocatalytic activity towards degrading methyl orange.  相似文献   

4.
Transition Metal Peroxofluoro Complexes. III. Preparation, Crystal Structure, and Vibrational Spectra of K6Ta3(O2)3OF13 · H2O Containing a m?-Oxo-diperoxo-octafluoroditantalate(V) Anion K6Ta3(O2)3OF13 · H2O has been prepared from solution and his crystal structure was determined by X-ray single crystal investigation: Space group Pnma, lattice constants a = 1 653.6 pm, b = 883.5 pm, c = 1 365.8 pm, Z = 4, R = 0.033. The compound yields [Ta(O2)F5]2? groups as well as m?-oxo-bridged [Ta2O(O2)2F8]4? anions with very diffrent O? O distances within the peroxo groups (139 pm vs. 164 and 175 pm) correlating well with the i.r. and Raman spectra. The different bonding in connection with an oxo-bridge is discussed.  相似文献   

5.
On Hydrates of the Type MX2 · 1 H2O with M = Sr, Ba and X = Cl, Br, I. Crystal Structures of Strontium Chloride Monohydrate, SrCl2 · 1 H2O, and Strontium Bromide Monohydrate, SrBr2 · 1 H2O The structures of SrCl2 · 1 H2O, orthorhombic, Pnma, a = 1088.1(1), b = 416.2(1), c = 886.4(1) pm, Z = 4, dc = 2.92 Mg m?3, R = 0.052 for 755 reflections, and of SrBr2 · 1 H2O, orthorhombic, Pnma, a = 1146.4(1), b = 429,5(1), c = 922.9(1) pm, Z = 4, dc = 3.88 Mg m?3, R = 0.056 for 762 reflections have been determined from a Patterson synthesis and refined by Fourier and Least Squares methods. The structure consists of [SrX2 = H2O]n-layers normal to [100] and Sr? H2O? Sr? H2O-chains parallel [010]. The Sr? O distances are 265.1(3) pm, SrCl2 · 1 H2O, and 265.9(4) pm, SrBr2 · 1 H2O. The shortest Sr? Cl and Sr? Br distances (298.9(1) and 315.3(1) pm) are within the layers. The environment of oxygen and strontium is a distorted tricapped trigonal prism. The orientation of the water molecules has been determined from vibrational spectroscopic measurements. The hydrogen atoms H1 and H2 form bifurcated hydrogen bonds of different strength to neighbouring halide ions. The corresponding O···X distances are 331.9(4) and 320.2(4) pm, SrCl2 · 1 H2O, and 340.8(4) and 333.8(4) pm, SrBr2 · 1 H2O. The other O? X distances are between 310.3(5) and 323.7(5) pm, SrCl2 · 1 H2O, and 323.5(5) and 333.2(6) pm, SrBr2 · 1 H2O.  相似文献   

6.
A Titanium (IV) Complex with Two Coordinatively Bonded Water Molecules: [(π-C5H5)2Ti(H2O)2](NO3)2 (π-C5H5)2Ti(NO3)2 and H2O react in acetone to form the diaquo complex [(π-C5H5)2-Ti(H2O)2](NO3)2 ( A ). An X-ray analysis shows the titanium atom to be nearly tetrahedrally coordinated. Mean values of distances: Ti? O 2.01 Å, Ti? Z 2.03 Å (Z = center of ring); angles: O? Ti? O 92.7°, Z? Ti? Z 133.6°. Anions and cations are joined by hydrogen bonds to form strands that run in the direction of the crystallographic a axis. A crystallizes in the orthorhombic space group Pnma with Z = 4 and lattice parameters at ? 100°C a = 7.601(2), b = 13.458(4) and c = 13.139(4) Å.  相似文献   

7.
On the Existence of the Compound K2TiOF4: Pyrohydrolytic Degradation of K2TiF6 and Thermochemical Behaviour of K2Ti(O2)F4 · H2O In an attempt to prepare K2TiOF4 we used the following three ways; solid-state reaction of K2TiF6, TiO2, and KF, pyrohydrolysis of K2TiF6 at 450 and 550°C, and thermal decomposition of K2Ti(O2)F4 · H2O. In each case the reaction products were mixtures of several compounds, always containing the kryolith-phase K2+xTiOxF6?x and TiO2. At 130°C K2Ti(O2)F4 · H2O forms K2Ti(O2)F4 by loss of H2O, and at 230°C the peroxogroup decomposes, yielding K2TiOF4 as main product. K2TiOF4 crystallizes tetragonally with the following lattice parameters: a = 769.7(1) and c = 1153.9(2)pm. The i.r. spectrum shows an absorption band at 810 cm?1, pointing to infinite chains of ? Ti? O? Ti? O? .  相似文献   

8.
The reaction of the meso-diol, Δ,Λ-[(en)2Rh(OH)2Rh(en)2]4+, with aqueous H2O2 and 1 equiv. of NaOH at 90° forms the μ-peroxo-μ-hydroxo-bridged species Δ,Λ-[(en)2Rh(O2,OH)Rh(en)2]3+ in a yield of ca. 50%. The compound was crystallized as perchlorate and trifluoromethanesulfonate salts. The structure of the latter salt was determined by single-crystal X-ray diffraction. The crystals are triclinic with space group P1 and lattice constants a = 11.895(5), b = 12.491(4), c = 13.053(5) Å, α = 103.98(3), β = 92.59(3), γ = 119.52(6)°. The distances of the metal centres to the bridging peroxo ligand are 1.999(8) and 1.983(6) Å. The O? O distance in the peroxo group is 1.521(14) Å, and the dihedral angle of the Rh? O? O? Rh unit deviates 65° from planarity. The peroxo complex reacts reversibly with acid, and spectrophotometric studies suggest that the reaction involves protonation of the peroxo bridge, with pKa = 2.70(2) at 25° in 1M NaClO4.  相似文献   

9.
Yellow oxo(diperoxo)bipyridylmolybdenum(VI), C10H8MoN2O5, Mr = 332.1 crystallizes in the monoclinic space group P21/n, a = 6.261(3), b = 12.726(1) c = 13.752(3)A, β = 91.84(2)°, V = 1095.2(5)A3, Z = 4, Dc = 2.014(1) g/cm3, MoKα(λ = 0.7107A), μ = 11.8 cm?1, T = 22(1)°C, R = 0.034, ωR = 0.040, number of reflections in least squares (F0 > 2σ(F0)) = 1125. The molybdenum coordination (distorted trigonal bipyramidal) is as in the corresponding chromium complex, C10H8CrN2O5 which has closely similar bond angles but is not isomorphous. The difference in MoNapex and MoNeq bond distances (2.312(5) and 2.199(5)A) is similar to that in the CrNapex and CrNeq distances (2.23(2) and 2.11(2)A). The MO distances for each peroxo ligand (ave. 1.910(2) and 1.950(2)A) are significantly different and slightly longer than those in the chromium complex as is the OO distance of 1.459(6)A. The latter is indicative of greater negative charge on the O2 ligands, approaching that of O2?2 in the molybdenum complex.  相似文献   

10.
The gas phase chemical reaction, H? + H2O → H2 + OH, and the effect of an additional water molecule on the reaction, H?(H2O) + H2O → H2 + OH(H2O), have been investigated. The optimal structures and energies of the reactants, products, two stable intermediates, and the transition state connecting the two intermediates have been determined. The additional water molecule does not affect the potential surface congruently: it destabilizes the H(H2O) minimum, but stabilizes the H2 ?OH minimum and the transition state connecting the two intermediates. However, it stabilizes the products more than the H2 ?OH? minimum. Finally, in line with the reduction in the barrier height, the transition state for the H(H20) to H2 ?OH? isomerization moves further along the reaction path.  相似文献   

11.
The preparation of some new phosphorus-fluoroamides of the type RP(O)FNH2 is described (R = CH3O-, C6H5O-, NH2-, C2H5O-, CH3NH-, C2H5NH-, C6H5-, C6H11-, C2H5-, CH3-, and C6H5S-). All of the R? P(O)FNH2 compounds were prepared at ?80°C in diethylether from the corresponding difluorides RP(O)F2 and ammonia: RP(O)F2 + 2NH3 → RP(O)FNH2 + NH4F. When P(O)FCl2 is reacted with ammonia in a molar ratio of 1:4, the hitherto unknown diamide of the series P(O)F3?n(NH2)n (n = 1,2,3) is formed. As starting compounds, CH3OP(O)F2 and CH3NHP(O)F2 were obtained for the first time. The shifts of characteristic valency frequencies and some nmr data are discussed in homologous series.  相似文献   

12.
The novel disulfamethoxazole diaquo Ni(II) monohydrate, [Ni(sulfamethoxazole)2(H2O)2]· H2O, was synthesized, characterized by infrared and electronic spectroscopies and the crystal structure determined. The compound crystallized in the monoclinic centrosymmetric space group P21/c, with four asymmetric units per unit cell. The nickel atoms are in slightly distorted regular octahedra, coordinated by four nitrogen atoms, two from N-arylamine and two from N-sulfonamide with the apical positions occupied by two oxygen atoms from the water molecules.  相似文献   

13.
Transition Metal Peroxofluoro Complexes. VIII. Crystal Structure of K2Ti(O2)F4. · 1/2H2O. Structural Comparison and Spectroscopic Data of the Compounds K2Ti(O)2F4 · xH2O (x = 1, 1/2, 0) The yellow hemihydrat K2Ti(O2)F4 · 1/2 H2O crystallizes monoclinic (space group C2/c, a = 1680.5(6), b = 653.2(1), c = 1224.3(4) pm, β = 115.8(1)°, Z = 8, Rw = 0.038 for 1113 independent reflections). It contains isolated, dinuclear, di(μ-fluoro)-bridged [Ti2(O2)2F8]4? anions, as known by orange coloured K2Ti(O2)F4 · H2O [1]. They are arranged in layers which are parallel to the (100) plane, whereas they are linked by hydrogen bonds forming infinite chains in K2Ti(O2)F4 · 1/2 H2O. Anhydrous K2Ti(O2)F4 - even yellow - crystallizes monoclinic with a = 828.9(2), b = 1107.6(2), c = 1303.9(3) pm, β = 92.29(2)°. I.r. and Raman spectra of all compounds are listed and interpreted. On the basis of the UV spectra the different colours of some titaniumperoxofluoro compounds are discussed in relation to the titanium-peroxid bonding.  相似文献   

14.
Three complexes, Na4[DyIII(dtpa)(H2O)]2?·?16H2O, Na[DyIII(edta)(H2O)3]?·?3.25H2O and Na3[DyIII (nta)2(H2O)]?·?5.5H2O, have been synthesized in aqueous solution and characterized by FT–IR, elemental analyses, TG–DTA and single-crystal X-ray diffraction. Na4[DyIII(dtpa)(H2O)]2?·?16H2O crystallizes in the monoclinic system with P21/n space group, a?=?18.158(10)?Å, b?=?14.968(9)?Å, c?=?20.769(12)?Å, β?=?108.552(9)°, V?=?5351(5)?Å3, Z?=?4, M?=?1517.87?g?mol?1, D c?=?1.879?g?cm?3, μ?=?2.914?mm?1, F(000)?=?3032, and its structure is refined to R 1(F)?=?0.0500 for 9384 observed reflections [I?>?2σ(I)]. Na[DyIII(edta)(H2O)3]?·?3.25H2O crystallizes in the orthorhombic system with Fdd2 space group, a?=?19.338(7)?Å, b?=?35.378(13)?Å, c?=?12.137(5)?Å, β?=?90°, V?=?8303(5)?Å3, Z?=?16, M?=?586.31?g?mol?1, D c?=?1.876?g?cm?3, μ?=?3.690?mm?1, F(000)?=?4632, and its structure is refined to R 1(F)?=?0.0307 for 4027 observed reflections [I?>?2σ(I)]. Na3[DyIII(nta)2(H2O)]?·?5.5H2O crystallizes in the orthorhombic system with Pccn space group, a?=?15.964(12)?Å, b?=?19.665(15)?Å, c?=?14.552(11)?Å, β?=?90°, V?=?4568(6)?Å3, Z?=?8, M?=?724.81?g?mol?1, D c?=?2.102?g?cm?3, μ?=?3.422?mm?1, F(000)?=?2848, and its structure is refined to R 1(F)?=?0.0449 for 4033 observed reflections [I?>?2?σ(I)]. The coordination polyhedra are tricapped trigonal prism for Na4[DyIII(dtpa)(H2O)]2?·?16H2O and Na3[DyIII(nta)2(H2O)]?·?5.5H2O, but monocapped square antiprism for Na[DyIII(edta)(H2O)3]?·?3.25H2O. The crystal structures of these three complexes are completely different from one another. The three-dimensional geometries of three polymers are 3-D layer-shaped structure for Na4[DyIII(dtpa)(H2O)]2?·?16H2O, 1-D zigzag type structure for Na[DyIII(edta)(H2O)3]?·?3.25H2O and a 2-D parallelogram for Na3[DyIII(nta)2(H2O)]?·?5.5H2O. According to thermal analyses, the collapsing temperatures are 356°C for Na4[DyIII(dtpa)(H2O)]2?·?16H2O, 371°C for Na[DyIII(edta)(H2O)3]?·?3.25H2O and 387°C for Na3[DyIII(nta)2(H2O)]?·?5.5H2O, which indicates that their crystal structures are very stable.  相似文献   

15.
Synthesis and Crystal Structure of Tetraphenylphosphonium Aqua-bis(tetrasulfido)thionitrosyl Osmate, PPh4[Os(NS)(S4)2(H2O)] PPh4[Os(NS)(S4)2(H2O)] has been prepared as redbrown crystals by reacting PPh4[OsNCl4] with a solution of excess disodium tetrasulfide in dimethylformamide/H2O and characterized by IR spectroscopy and by a crystal structure determination. Space group P21/n, Z = 4, structure solution with 4162 independent reflections, R = 0.059 for reflections with I > 2σ(I). Lattice dimensions at ?40°C: a = 1138.9(5), b = 1301.4(4), c = 2092.7(7) pm, β = 104.74(3)º. Os? N, Os? O, and Os? S distances are 175.2(12), 219.8(12), and 237.5(4)?239.1(4) pm, respectively. The Os?N?S moiety is approximately linear, with an OsNS angle of 171.2(7)º.  相似文献   

16.
The [Co(DH)2(Py)2][H2F3] complex (DH? is the dimethylglyoxime residue) is synthesized and studied by X-ray diffraction analysis. Structural units of the crystal are complex cations [Co(DH)2(Py)2]+ and anions [H2F3]?. Two residues of α-dimethylglyoxime linked by intramolecular hydrogen bonds O-H?O lie in the equatorial plane of the octahedral Co(III) complex, and two pyridine molecules occupy the apical positions. The H2F 3 ? anion is formed due to the association of the F? ion with two HF molecules through hydrogen bonds F-H?F. Weak intermolecular interactions C-H?F and C-H?O are observed in the crystal. The problem of the influence of these interactions on the packing of the complexes in crystal is discussed.  相似文献   

17.
Fluorides and Fluoro Acids. V. Crystal Structure of the 1:4 Phase in the System Water-Hydrogen Fluoride and a New Investigation of One of the 1:2 Phases In the quasi binary system H2O? HF the 1:2 phase of known crystal structure was recognized as the stable high-temperature phase. A more accurate redetermination of its structure (monoclinic, space group P21/c, Z = 4, a = 3.477, b = 6.024, c = 11.358 Å, β = 96.70° at ?100°C, R = 0.032 for 1356 observed MoKα data) confirmed the previous results of a layer structure formed by strong hydrogen bonds. H3OF · HF appears besides H3OHF2 as a possible structural formula. — The crystal structure of the 1:4 phase of the system was also determined (triclinic, P1 , Z = 2, a = 5.574, b = 6.429, c = 6.874 Å, α = 115.79, β = 96.63, γ = 108.79° at ?113°C, R = 0.049 for 1942 observed MoKα data). By strong hydrogen bonds the atoms form rings, which are condensed to parallel ribbons. Possible structural formulae, based on the distribution of interatomic distances, are H3OH3F4, H3OH2F3 · HF and H3OF · 3 HF. — Interatomic distances in the hydrogen bonds F? H…?F and O? H…?F of both structures and the known one of the 1:1 phase are discussed in comparison.  相似文献   

18.
Hydrogen Bonds in o- and m-Phenylenediammonium Aquapentafluoro Metallates(III) (MIII = Al, Cr, Fe) m- and o-Phenylenediammonium-[MIIIF5(H2O)] compounds of Al, Cr and Fe were synthesized and characterized by X-ray single crystal structure analysis. All structures are described in the space group P212121 (Z = 4). m-Ph(NH3)22+ (Ph(NH3)22+ = phenylenediammonium) compounds: Al : a = 6.489(2), b = 7.943(2), c = 18.204(2) Å, R/wR = 0.084/0.050 for 1 533 reflections; Cr : a = 6.571(2), b = 8.006(2), c = 18.456(3) Å, R/wR = 0.050/0.040 for 1 571 reflections; Fe : a = 6.608(2), b = 8.052(2), c = 18.424(4) Å, R/wR = 0.042/0.034 for 1 947 reflections. o-Ph(NH3)22+ compounds: Al : a = 6.580(2), b = 7.891(2), c = 18.319(5) Å, R/wR = 0.050/0.045 for 2 370 reflections; Cr : a = 6.642(2), b = 7.954(2), c = 18.484(4) Å, R/wR = 0.065/0.043 for 2 041 reflections; Fe : a = 6.693(2), b = 7.995(4), c = 18.529(7) Å, R/wR = 0.035/0.033 for 2 651 reflections. Isolated distorted octahedral [MIIIF5(H2O)]2? anions are connected by double O? H ?F hydrogen bonds of alternating strength to form chains in the b direction. Those chains, packed in a pseudohexagonal way, are further linked by the ammonium functions of the phenylenediammonium cations to a 3 D hydrogen bond network.  相似文献   

19.
To model the structures of dissolved uranium contaminants adsorbed on mineral surfaces and further understand their interaction with geological surfaces in nature, we have performed periodic density funtional theory (DFT) calculations on the sorption of uranyl species onto the TiO2 rutile (110) surface. Two kinds of surfaces, an ideal dry surface and a partially hydrated surface, were considered in this study. The uranyl dication was simulated as penta‐ or hexa‐coordinated in the equatorial plane. Two bonds are contributed by surface bridging oxygen atoms and the remaining equatorial coordination is satisfied by H2O, OH?, and CO32? ligands; this is known to be the most stable sorption structure. Experimental structural parameters of the surface–[UO2(H2O)3]2+ system were well reproduced by our calculations. With respect to adsorbates, [UO2(L1)x(L2)y(L3)z]n (L1=H2O, L2=OH?, L3=CO32?, x≤3, y≤3, z≤2, x+y+2z≤4), on the ideal surface, the variation of ligands from H2O to OH? and CO32? lengthens the U? Osurf and U? Ti distances. As a result, the uranyl–surface interaction decreases, as is evident from the calculated sorption energies. Our calculations support the experimental observation that the sorptive capacity of TiO2 decreases in the presence of carbonate ions. The stronger equatorial hydroxide and carbonate ligands around uranyl also result in U?O distances that are longer than those of aquouranyl species by 0.1–0.3 Å. Compared with the ideal surface, the hydrated surface introduces greater hydrogen bonding. This results in longer U?O bond lengths, shorter uranyl–surface separations in most cases, and stronger sorption interactions.  相似文献   

20.
FeOx, TiO2, and Fe–Ti–Ox catalysts were synthesized and used in the catalytic hydrolysis of hydrogen cyanide (HCN). Nearly 100% HCN conversion was achieved at 250 °C over the Fe–Ti–Ox catalyst. TiO2 rutile was detected over TiO2, but not over Fe–Ti–Ox, which suggested that the interaction between Fe and Ti species could inhibit the TiO2 phase transition. Furthermore, the interaction between Fe and Ti species over Fe–Ti–Ox could promote the selectivity of NH3 and CO. The mechanism of hydrolysis of HCN over FeOx, TiO2, and Fe–Ti–Ox can be given as follows: HCN + H2O → methanamide → ammonium formate → formic acid → H2O + CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号