首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electron paramagnetic resonance (EPR) spectra of Cu2+-doped RbH2 PO4 at elevated temperatures indicate a phase transition at 358 K. The EPR-silent state at this temperature is attributed to a so-called polymeric phase transition. After the transition when the temperature is lowered to 293 K, the EPR signal does not appear; therefore, the transition is irreversible. This result seems to be in agreement with the other observations. The EPR spectra for the sample indicate the presence of two sites for Cu2+, and the values of EPR parameters are in accord with the literature on Cu2+-doped single crystals. Any other phase transitions could not to be observed at low temperatures down to 113 K.  相似文献   

2.
The local lattice distortions and the electron paramagnetic resonance (EPR) parameters (g factors, hyperfine structure constants and zero-field splittings) for Cu2+, Mn2+ and Fe3+ in ZnWO4 are theoretically studied based on the perturbation calculations for rhombically elongated octahedral 3d9 and 3d5 complexes. The impurity centres on Zn2+ sites undergo the local elongations of 0.01, 0.002 and 0.013 Å along the C2 axis and the planar bond angle variations of 8.1°, 8.0° and 8.6° for Cu2+, Mn2+ and Fe3+, respectively, due to the Jahn–Teller effect and size and charge mismatch. In contrast to the host Zn2+ site with obvious axial elongation (~0.31 Å) and perpendicular (angular) rhombic distortion, all the impurity centres demonstrate more regular octahedral due to the above local lattice distortions. The copper centre exhibits significant Jahn–Teller reductions for the spin-orbit coupling and orbital angular momentum interactions, characterised by the Jahn–Teller reduction factor J (≈0.29 ? 1). The calculated EPR parameters agree well with the experimental results. The local structures of the impurity centres are analysed in view of the corresponding lattice distortions.  相似文献   

3.
The spin Hamiltonian parameters (i.e., anisotropic g factors and hyperfine structure constants) and local tetragonal distortions for Cu2+ in crystalline and amorphous TeO2 and GeO2 are theoretically investigated using the high-order perturbation formulas of these parameters for a tetragonally elongated octahedral 3d9 cluster. The impurity Cu2+ occupying the octahedral sites are found to experience the relative tetragonal elongation ratios of about 11.4% and 9.5% for crystalline TeO2 and GeO2 and 10.8% and 6.6% for amorphous TeO2 and GeO2, respectively, along the C4 axis due to the Jahn–Teller effect. This reveals the larger tetragonal elongation distortions for the Cu2+ centres in crystalline than amorphous systems (especially TeO2). The theoretical spin Hamiltonian parameters show good agreement with the experimental data. The results are discussed.  相似文献   

4.
The spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, where i = x, y, z) of the rhombic Cu2+ centres in the CuGaSe2 crystal are determined from the high-order perturbation formulae based on the cluster approach (sometimes also called two-spin-orbit parameter model). In the studies, some parameters in the analysis of g factors for the same centre within the tetragonal symmetry approximation in the previous paper are used, and the parameter due to the perturbation of rhombic crystal field caused by a charge compensator at, e.g., [110] direction are considered. As the result of a fitting process, the determined spin-Hamiltonian parameters are in reasonable agreement with the experimental values. The results are discussed.  相似文献   

5.
H. Manaka  M. Nishi  I. Yamada 《高压研究》2013,33(3-6):187-192
Abstract

The two-dimensional Heisenberg antiferromagnet (C2H5NH3)2CuCl4 has the ferromagnetic intralayer exchange interaction, while the extremely weak interlayer exchange interaction is antiferromagnetic. Neutron scattering experiments under high pressures have been performed on this compound. We confirm that the spin structure changes around 1~2 GPa from the collinear alignment along the a-axis to a spin-canting one. The weak moment due to the canting is parallel to the c-axis. The results indicate that the ferromagnetic intralayer and the antiferromagnetic interlayer exchange interactions are maintained up to 1~2 GPa. Why the weak ferromagnetic moment along the c-axis occurs is due to a lowering of crystal symmetry by pressure.  相似文献   

6.
Photoluminescence spectra of Sm2+-doped BaBr2 have been measured under hydrostatic pressures up to 17 GPa at room temperature. In the low pressure range a red-shift of the broad 5d-4f transition of −145 cm−1/GPa is observed. From 5 to 8 GPa a phase mixture of the initial orthorhombic phase and the high-pressure monoclinic phase gives rise to two 5d-4f bands, which are strongly overlapping. Above 8 GPa the crystal is completely transformed to its high-pressure phase where two different Sm2+ sites exist, but only one broad 5d-4f transition is detected. It exhibits a red-shift of −36 cm−1/GPa. In addition, the line shifts of the 5D07FJ (J=0, 1, 2) transitions are investigated. Linear shifts of −19 cm−1/GPa for J=0, 2 and of −13 cm−1/GPa for J=1 are observed in the pressure range from 0 to 5 GPa.  相似文献   

7.
Fluorescence spectra of LiYF4:Pr3+ have been measured between 12,000 and 22,000 cm−1 under pressures up to 10 GPa. In total, 25 crystal field energy levels were obtained and used for the determination of free-ion and crystal field parameters under pressure. According to the nephelauxetic effect, the free-ion parameters decrease with increasing pressure. The relative decrease is larger for the Slater than for the spin-orbit coupling parameter. This behavior is consistent with former studies on Pr3+ in different crystals and can be explained by a special covalency model. According to an effective D2d symmetry, five crystal field parameters B02(f,f), B04(f,f), B44(f,f), B06(f,f), and B46(f,f) are non-zero. The pressure-induced changes of these parameters have been determined up to the maximum pressure of 10 GPa. In order to improve the calculation of the crystal field levels, the configuration interactions with the 4f16p1 configuration have been taken into account. The effect of these interactions are also analyzed under pressure and distinct improvements of the energy level calculations have been obtained.  相似文献   

8.
The oxide responsible for high-temperature superconductivity (onset ∼100 K, zero resistance above liquid N2 temperature) is found to be YBa2Cu3O7±δ. Contribution No. 432 from the Solid State and Structural Chemistry Unit  相似文献   

9.
Superconductivity is found in tetragonal La3−x Ba3+x Cu6O14+δ and La, Ba)6−x Sr x Cu6O14+δ even though they do not possess Cu-O chains or the K2NiF4 structure. Resistivity measurements confirm the occurrence of a transformation from chain-superconductivity to sheet-superconductivity in YBa2Cu3O7−δ as δ is varied in the range 0.0–0.5. Contribution No. 481 from the Solid State and Structural Chemistry Unit  相似文献   

10.
11.
The electron paramagnetic resonance (EPR) parameters (the anisotropic g factors, the hyperfine structure parameters and the quadrupole coupling constant Q) and local structure for Cu2+ in BeO are theoretically investigated from the perturbation formulas of these parameters for a 3d9 ion under trigonally distorted tetrahedra. The ligand orbital and spin-orbit coupling contributions are included in the basis of the cluster approach, in view of the strong covalency of the [CuO4]6? cluster. From the calculations, the impurity Cu2+ is suggested not to occupy exactly the ideal Be2+ site but to suffer a slight inward displacement (≈0.024 Å) toward the ligand triangle along the C3 axis. The theoretical EPR parameters show good agreement with the experimental data.  相似文献   

12.
Abstract

X-ray powder diffraction measurements for YBa2Cu3O7-y and NdBa2Cu3O7-y were made at the intense synchrotron radiation source under high pressure up to 5 GPa. These samples were wrapped tightly in platinum foil to avoid deoxidizing atmosphere. The orthorhombic to tetragonal transition temperature increases with pressure in both samples. These results are discussed on the basis of the disordering of the oxygen atoms on the chain sites.  相似文献   

13.
The EPR g factors, g|| and g, for the isoelectronic 3d9 ions Ni+ and Cu2+ at the tetragonal Cu+ site of the CuGaSe2 crystal are calculated from the high-order perturbation formulas based on a two-spin-orbit-parameter model. In the model, both the contributions to g factors from the spin-orbit parameter of central 3d9 ion and that of ligand ion are contained. The calculated results appear to be consistent with the experimental values. The tetragonal distortions (characterized by θθ0, where θ is the angle between the metal-ligand bond and C4 axis, and θ0≈54.74° is the same angle in cubic symmetry) of Ni+ and Cu2+ centers, which are different from the corresponding angle in the host CuGaSe2 crystal and from impurity to impurity, are obtained from the calculations. The difference of the sign of g||g between the isoelectronic Ni+ and Cu2+ centers is found to be due to the different tetragonal distortions of both centers in the CuGaSe2 crystal.  相似文献   

14.
15.
We report the results of Monte Carlo simulation of the phase diagram and oxygen ordering in YBa2Cu3O6+x for low intra-sublattice repulsion. At low temperatures, apart from tetragonal (T), orthorhombic (OI) and ‘double cell’ ortho II phases, there is evidence for two additional orthorhombic phases labelled here asOI andOIII. At high temperatures, there was no evidence for the decomposition of theOI phase into theT andOI phases. We find qualitative agreement with experimental observations and cluster-variation method results.  相似文献   

16.
The spin-Hamiltonian (SH) parameters (g factors g||, g and hyperfine structure constants A||, A) and d–d transitions for ZnCdO:Cu2+ are calculated based on the perturbation formulas for a 3d9 ion in tetragonally elongated octahedra. Good agreement between the calculated results (four SH parameters and three optical absorption bands) and the experimental results can be obtained. Since the SH parameters are sensitive to the local structure of a paramagnetic impurity center, the tetragonal distortion (characterized by the relative elongation ratio ρ ≈ 3.5% along the C4 axis) of the impurity center due to the Jahn–Teller effect is also acquired from the calculations. The negative and positive signs of hyperfine structure constants A|| and A for ZnCdO:Cu2+, respectively, are also suggested in the discussions.  相似文献   

17.
刘吉地  王育华 《物理学报》2010,59(5):3558-3563
采用溶胶-凝胶法(sol-gel method)于不同气氛条件下成功合成了Zn1.92-xMgxSiO4:0.08Mn2+(0≤x≤0.12)系列粉末样品.利用X射线衍射(XRD)、光致发光(PL)谱等分析手段对Zn1.92-xMgxSiO4:0.08Mn2+系列  相似文献   

18.
The local structure of the Cu2+ centers in alkali lead tetraborate glasses was theoretically studied based on the optical spectra data and high-order perturbation formulas of the spin Hamiltonian parameters (electron paramagnetic resonance g factors g, g and hyperfine structure constants A, A) for a 3d9 ion in a tetragonally elongated octahedron. In these formulas, the relative axial elongation of the ligand O2? octahedron around the Cu2+ due to the Jahn–Teller effect is taken into account by considering the contributions to the g factors from the tetragonal distortion which is characterized by the tetragonal crystal-field parameters Ds and Dt. From the calculations, the ligand O2? octahedral around Cu2+ is determined to suffer about 19.2% relative elongation along the C4 axis of the alkali lead tetraborate glass system, and a negative sign for A and a positive sign for A for these Cu2+ centers are suggested in the discussion.  相似文献   

19.
Two theoretical methods, the perturbation theory method (PTM) and the complete diagonalization (of energy matrix) method (CDM), are applied to calculate the spin-Hamiltonian parameters (g-factors g, g and hyperfine structure constants A, A, obtained from electron paramagnetic resonance (EPR) spectra) and d–d transitions (obtained from optical spectra) for two tetragonal Cu2+ centers in Ba2ZnF6:Cu2+ crystals. The Cu2+(I) ion replaces the Zn2+ ion at tetragonally compressed octahedral coordination and has the ground state 2A1(|dz2), whereas the Cu2+(II) ion is at an interstitial site with a square-planar Fcoordination and has the ground state 2B2(|dx2-y2). The calculated spin-Hamiltonian parameters and d–d transitions from the PTM and CDM coincide and are in reasonable agreement with the experimental values. This suggests that both methods are effective for the theoretical studies of EPR and optical spectral data for 3d9 ions in tetragonal symmetry with different ground states. The defect structures of the two Cu2+ centers in Ba2ZnF6:Cu2+ are also estimated.  相似文献   

20.
采用助熔剂法,以CaCl2为助熔剂,生长Cr4+ :Ca2GeO4新型近红外可调谐激光晶体.通过X射线衍射(XRD)、激光Raman光谱、X射线光电子能谱(XPS)等方法对晶体进行结构表征.结果表明,得到的晶体为单斜晶系镁橄榄石结构的低温γ-Cr4+ :Ca2GeO4单晶,晶格参数为a=5.3209 (1 =0.1 nm)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号