首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. A. Schouten 《高压研究》2013,33(1-6):589-591
Abstract

It is a well-recognized fact that the application of pressure has a large influence on the properties of pure substances. It will be shown here that this is even more true in the case of mixtures. Under high pressure, several new and interesting phenomena are observed. Some recent results will be presented and discussed.  相似文献   

2.
卢志文  仲志国  刘克涛  宋海珍  李根全 《物理学报》2013,62(1):16106-016106
采用基于密度泛函理论的第一性原理计算方法,研究了Ag-Mg-Zn合金中金属间化合物AgMg,Mg4Zn8和Ag8Mg4Zn4在高温高压下的结构稳定性、弹性性能和热动力学性质.理论计算结果与实验值和其他的理论结果符合得非常好.研究表明:金属间化合物AgMg,Mg4Zn8和Ag8Mg4Zn4在零温零压下是力学稳定的;Mg4Zn8和Ag8Mg4Zn4为延性相,而AgMg则为脆性相;在这三种金属间化合物中,Ag8Mg4Zn4的塑性最好,AgMg的塑性最差.利用准谐Debye模型,讨论了高温高压下Ag-Mg-Zn合金中金属间化合物的摩尔振动内能Uvib,m,摩尔Helmholtz振动自由能Avib,m,摩尔振动熵Svib,m,摩尔定容热容Cv,m,摩尔定压热容Cp,m,热膨胀系数α,Griüneisen 参量γ和Debye温度(O).  相似文献   

3.
王海燕  历长云  高洁  胡前库  米国发 《物理学报》2013,62(6):68105-068105
采用平面波赝势密度泛函理论研究了钛铝系金属间化合物TiAl3的结构性质, 计算值与实验值及其他理论值相符合. 通过准谐德拜模型研究了TiAl3的热动力学性质, 计算得到了相对体积(V/V0)与压强和温度的关系, 以及不同温度和压强下的热膨胀系数和热容. 与TiAl的计算结果进行对比, 发现随着温度的升高, TiAl的热膨胀系数增大的速度高于TiAl3, 且随着压强的增大温度效应减弱; TiAl3的热容值近似为TiAl的热容值的2倍. 关键词: 结构性质 热动力学性质 第一性原理 高压  相似文献   

4.
本文利用密度泛函理论研究了高压下bcc结构钨的弹性和热力学性质,计算得到钨的晶格常数、体弹模量以及其对压强的一阶偏导与实验值符合较好;在常压下弹性常数计算值与实验值符合较好的基础上,预测了其高压数据.针对钨的固相结构稳定性问题,根据力学稳定判断标准得到0~600 GPa范围内bcc结构是力学稳定的.此外,通过体模量和剪切模量的计算得到bcc结构钨在压力低于600 GPa时的力学性能表现为韧性.最后,基于准简谐德拜模型,成功预测了钨的热膨胀系数、等压热容、等容热容和熵随着压强和温度的变化关系,为钨及其合金的进一步设计及应用提供参考.  相似文献   

5.
Abstract

We report a theoretical calculation of the band structure and superconductivity of niobium carbide in the NaCl structure under pressure. The effect of pressure on the band structure is obtained by means of the self-consistent linear muffin-tin orbital method. The parameters necessary to calculate the superconducting transition temperature (Tc) are taken from our band structure results. The dependence of total energy on volume is calculated and is in good agreement with other earlier works. The calculated value of the cell parameter is in agreement with the experimental value (8.45 a.u). McMillan formula is used to calculate the value of Tc The calculated values of Tc are compared with the available experimental data.  相似文献   

6.
本文利用密度泛函理论研究了高压下bcc结构钨的弹性和热力学性质,计算得到钨的晶格常数、体弹模量以及其对压强的一阶偏导与实验值符合较好;在常压下弹性常数计算值与实验值符合较好的基础上,预测了其高压数据.针对钨的固相结构稳定性问题,根据力学稳定判断标准得到0~600 GPa范围内bcc结构是力学稳定的.此外,通过体模量和剪切模量的计算得到bcc结构钨在压力低于600 GPa时的力学性能表现为韧性.最后,基于准简谐德拜模型,成功预测了钨的热膨胀系数、等压热容、等容热容和熵随着压强和温度的变化关系,为钨及其合金的进一步设计及应用提供参考.  相似文献   

7.
王海阔  任瑛  贺端威  许超 《物理学报》2017,66(9):90702-090702
将六面顶压机立方压腔内置入电路,采用原位电阻测量确定Bi,Tl,Ba相变的方法,标定了压腔内不同位置的压力(强).通过标定立方压腔顶锤表面的压力并结合计算,分别得到了外部加载与压腔密封边受力以及合成腔体受力的对应关系.实验分析结果表明,随着外部加载的增加,当腔体压力达到5 GPa时,消耗在压腔密封边上的加载急剧上升,消耗在合成腔体的加载趋于不变,从而导致立方压腔压力达到上限.利用实验结果,分析了立方压腔在高压下的受力状态,解释了立方压腔的压力难以超过7 GPa的原因.结合立方压腔的几何结构,通过理论分析,提出了采用高体弹模量的物质作为传压介质,同时采用低体弹模量的物质作为密封边提高立方压腔压力上限的可行方案.通过定量标定叶腊石压腔轴向的压力梯度,给出了压腔内沿对称轴不同位置压力值的计算方法,此方法可为高压实验提供更精确的压力数据.  相似文献   

8.
We have investigated the phonon dispersion curves and one-phonon density of states up to the pressure of 8 GPa using a theoretical model, namely the rigid ion model. The transverse acoustic phonons as a function of pressure have been compared with the recently measured inelastic neutron scattering data which show a strong softening near the zone boundaries. The calculated one-phonon density of states show pronounced shift in the peak positions with the increase in pressure.  相似文献   

9.
颜小珍  邝小渝  毛爱杰  匡芳光  王振华  盛晓伟 《物理学报》2013,62(10):107402-107402
采用密度泛函理论中的赝势平面波方法研究了高压下超导材料 ErNi2B2C 的弹性性质、电子结构和热力学性质.分析表明, 弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显. 电子态密度(DOS)的计算结果显示, 在费米能级(EF)处的 DOS 峰随外界压强的增大显著降低, 由于 ErNi2B2C 相对较高的超导温度(Tc)起因于EF处的 DOS 峰, 因此推测压强增大可能会降低 ErNi2B2C 的 Tc.类似的现象在超导材料 MgB2和 SrAlSi 中已被发现.此外, 基于准谐德拜模型, 对 ErNi2B2C 在高温高压下的热力学性质的研究表明, 在一定范围内, 温度和压强将对其热膨胀系数和热容产生明显的影响. 关键词: 高压 弹性性质 电子结构 热力学性质  相似文献   

10.
使用第一性原理方法,研究了拓扑材料MoP在高压下的电子结构和晶格动力学行为.高压下MoP的晶体结构和费米面附近的电子能带相对稳定,但是声子能谱以及电声子耦合参数随着压强的增大有明显的变化.声子谱中高频光学支逐渐硬化,低频声学支中也有部分出现明显软化,体系的电声子耦合随压强的增大而逐步变强,导致超导转变温度从常压下的零提高到30 GPa时的0.16 K,最后在50 GPa时提高到1.21 K,与实验的变化趋势基本一致.研究揭示了高压下MoP中出现的超导现象主要是电声子耦合造成的,为理解实验观测到的拓扑超导共存现象提供了一定的理论支持.  相似文献   

11.
We investigate the structural, electronic, first-order pressure-induced phase transition, lattice dynamical, and thermodynamic properties of yttrium antimonide (YSb) with the rock salt structure at high pressures and high temperatures using the projector-augmented wave method based on the density-functional theory. By the usual condition of equal enthalpy, we find that the rock salt-structured YSb is stable up to 31.10 GPa, and then transforms to the CsCl-type structure, this is consistent with the experiment result which begins transform from 26 GPa then ends at 36 GPa. The phonon dispersion curves of the rock salt-structured YSb are calculated under high pressure for the first time using a linear-response approach to density-functional perturbation theory successfully. Within the calculated phonon density of state and the quasi-harmonic approximation, we predict further the thermal physical properties of YSb under high temperature and high pressure systematically.  相似文献   

12.
李全  郑伟涛 《中国物理 B》2016,25(7):76103-076103
Diamond, as the hardest known material, has been widely used in industrial applications as abrasives, coatings, and cutting and polishing tools, but it is restricted by several shortcomings, e.g., its low thermal and chemical stability. Considerable efforts have been devoted to designing or synthesizing the diamond-like B–C–N–O compounds, which exhibit excellent mechanical property. In this paper, we review the recent theoretical design of diamond-like superhard structures at high pressure. In particular, the recently designed high symmetric phase of low-energy cubic BC3 meets the experimental observation, and clarifies the actual existence of cubic symmetric phase for the compounds formed by B–C–N–O system,besides the classical example of cubic boron nitride.  相似文献   

13.
14.
Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.  相似文献   

15.
吴宝嘉  李燕  彭刚  高春晓 《物理学报》2013,62(14):140702-140702
高压下对InSe样品进行原位电阻率和霍尔效应测量. 电阻率测量结果显示, 样品在5–6 GPa区间呈现金属特性, 在12 GPa 的压力下发生由斜六方体层状结构到立方岩盐矿的结构相变, 且具有金属特性. 霍尔效应测量结果显示, 样品在6.6 GPa由p型半导体转变成n型半导体, 电阻率随着压力的升高而逐渐下降是由于载流子浓度升高引起的. 关键词: InSe 高压 电阻率 霍尔效应  相似文献   

16.
Polycrystalline BiCuSeO oxides are prepared by solid-state reaction followed by pressureless sintering (PLS) and high pressure sintering (HPS) methods. Both the experimental results and the density functional theory calculations indicate that the crystal defect concentrations of BiCuSeO can be reduced under the effect of high pressure. By comparing with the PLS sample, a larger power factor and a lower thermal conductivity can be obtained for the HPS sample. The maximum figure of merit ZT~0.4 @ 800?K was obtained for the HPS sample, which is about 3 times higher than the PLS sample. These results indicate that the effect of high pressure is beneficial to modifying the microstructure and improving the thermoelectric performance of BiCuSeO oxyselenide.  相似文献   

17.
Abstract

Numerical calculations are used to study stress-strain state of high pressure apparatus components in compression, heating, cooling and unloading with regard to large elastoplastic deformations, high pressures and temperatures, anisotropy of materials and contact interaction. Regularities of HPA components deformation in the processes under consideration are studied.  相似文献   

18.
The application of high pressure can fundamentally modify the crystalline and electronic structures of elements as well as their chemical reactivity, which could lead to the formation of novel materials. Here, we explore the reactivity of lithium with sodium under high pressure, using a swarm structure searching techniques combined with first-principles calculations, which identify a thermodynamically stable Li–Na compound adopting an orthorhombic oP8 phase at pressure above 355 GPa. The formation of Li–Na may be a consequence of strong concentration of electrons transfering from the lithium and the sodium atoms into the interstitial sites, which also leads to open a relatively wide band gap for Li NaoP8. This is substantially different from atoms sharing or exchanging electrons in common compounds and alloys. In addition, lattice-dynamic calculations indicate that Li Na-oP8 remains dynamically stable when pressure decompresses down to 70 GPa.  相似文献   

19.
High-pressure effects on the lattice dynamics and dielectric properties of the BN, BP, BAs, BSb and BBi alloys have been carried out using the density-functional perturbation theory within the local density approximation. We study the variation of the optical phonon frequencies (ωTO and ωLO), the high-frequency dielectric coefficient (ε) and the dynamic effective charge (Z*) with pressure. The ωTO and ωLO have a quadratic form with pressure for all boron compounds. The obtained ε and Z* for BN, BP remain constant with pressure. However, for BAs, BSb and BBi, ε and Z* have a quadratic form with pressure. Our results are in good agreement with the available experimental data for BN and BP and they allow prediction for BAs, BSb and BBi.  相似文献   

20.
In this article, we have investigated the high-pressure structural phase transition of alkaline earth oxides using the three-body potential (TBP) model. Phase transition pressures are associated with elastic constants. An effective inter-ionic interaction potential (TBP) with long-range Coulomb interactions and the Hafemeister–Flygare type short-range overlap repulsion and the vdWl interaction is developed. The present calculations have revealed reasonably good agreement with the available experimental data on structural transition (B1–B2 structure). The phase transition pressures Pt of MgO, CaO, SrO, and BaO occur at 220, 45, 40, and 100?GPa, respectively. Further, the variations of the second-order elastic constants with pressure have followed a systematic trend, which are almost identical to those exhibited by the observed data measured for other semiconducting compounds with rocksalt (B1)-type crystal structure. It is found that TBP promises that we would be able to predict phase transition pressure and elastic constants for other chalcogenides as well. The results may be useful for geophysical study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号