首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We developed a method to determine the absolute pressure effect on thermocouple electromotive force (EMF), based on a single wire method using Kawai-type multi-anvil apparatus. In this method, pressure conditions along the wires were evaluated based on in situ X-ray diffraction using synchrotron X-ray radiation. The pressure effect of the Seebeck coefficients of chromel and alumel was determined up to 7?GPa and 600°C by the analyses of single wire EMFs and pressure-temperature profiles along the wires. The temperature correction for the type K thermocouple was calculated to be from 0°C to –3°C in the studied conditions. Since the multi-anvil apparatus is capable of achieving much higher pressure and temperature, the method presented in this study promises to reveal absolute temperature correction for thermocouples over a wide range of pressure and temperature conditions.  相似文献   

2.
ABSTRACT

The pressure effect on the electromotive force (EMF) of a Pt13Rh–Pt (type R) thermocouple was examined to determine the temperature measurement accuracy of solid pressure medium apparatuses in high-pressure experiments. Single-wire EMFs were measured up to pressure of 13?GPa and temperature of 1173?K with a Kawai-type multi-anvil apparatus for Pt13Rh and Pt based on the single-wire method. The pressure conditions along the wires were evaluated by in situ X-ray diffraction using synchrotron X-ray radiation. The pressure effect of the Seebeck coefficients of Pt13Rh and Pt were determined by the analysis of the single-wire EMFs and pressure–temperature profiles along the wires and was virtually consistent with those determined in previous studies at lower pressures and temperatures. For type R thermocouple, the difference between the nominal and real temperatures was determined to be as large as –75?K at 13?GPa and 873?K.  相似文献   

3.
ABSTRACT

Nano-polycrystalline diamond (NPD) with various grain sizes has been synthesized from glassy carbon at pressures 15–25?GPa and temperatures 1700–2300°C using multianvil apparatus. The minimum temperature for the synthesis of pure NPD, below which a small amount of compressed graphite was formed, significantly increased with pressure from ~1700°C at 15?GPa to ~1900°C at 25?GPa. The NPD having grain sizes less than ~50?nm was synthesized at temperatures below ~2000°C at 15?GPa and ~2300°C at 25?GPa, above which significant grain growth was observed. The grain size of NPD decreases with increasing pressure and decreasing temperature, and the pure NPD with grain sizes less than 10?nm is obtained in a limited temperature range around 1800–2000°C, depending on pressure. The pure NPD from glassy carbon is highly transparent and exhibits a granular nano-texture, whose grain size is tunable by selecting adequate pressure and temperature conditions.  相似文献   

4.
The thermo emf in Czochralski-grown silicon single crystals (Cz-Si) was experimentally studied in a range of pressures up to 20 GPa. The pressure dependences revealed phase transitions in the metallic phase of silicon, which passed from tetragonal to orthorhombic and then to hexagonal lattice. The high-pressure silicon phases, as well as the metallic high-pressure phases in ANB8?N semiconductors, possess conductivity of the hole type. As the pressure decreases, the emf behavior reveals transitions to the metastable phases Si-XII and Si-III. Preliminary thermobaric treatment of the samples at a pressure of up to 1.5 GPa and a temperature of T=50–650°C influences the thermoelectric properties of Cz-Si at high pressures.  相似文献   

5.
ABSTRACT

We studied the effect of pressure and temperature on the hydrocarbon (HC) chain length distribution and total amount of HCs in the reaction of direct graphite hydrogenation at pressures of 0.1–7.8?GPa and temperatures of 1000–1350°C. An increase in pressure was found to lead both to an increase in the absolute yield of HCs due to direct graphite hydrogenation and to chain elongation of HC products. Light alkanes predominate among HCs in the entire studied range of P–T parameters. However, their concentration in quenched fluids increases as pressure is elevated, from less than 10?rel.% at 0.1?GPa to more than 40–50?rel.% at P?≥?3.8?GPa. Methane is actually the only light alkane among reaction products at 0.1?GPa and 1000°C, while it is a minor component at 7.8?GPa and 1350°C. The most stable alkane at pressures above 3.8?GPa is ethane (C2H6).  相似文献   

6.
A new furnace system with an almost zero temperature gradient throughout the sample area was designed for multi-anvil high pressure experiments. Test experiments of the new design were performed using 18/11 and 25/15 cell assemblies at 4?GPa, 1400°C and 1500°C, respectively. The temperature field within the sample capsules appeared to be very homogenous as indicated by Mg2Si2O6–MgCaSi2O6 two-pyroxene thermometry, by direct temperature measurements using two thermocouples within the same assembly, and by distribution of solid and liquid phases in the sample capsule. The temperature gradient is estimated to be <2.4°C/mm over an area of 4?×?5?mm2 within the furnace. It is significantly lower than standard multi-anvil experiments with straight or stepped furnace systems, which are at the levels of 20–200°C/mm.  相似文献   

7.

An experimental apparatus was built to measure the time constant of fine wet-bulb thermocouples in air. Rapid response solenoid valves (15 msec response time) were used to control airflow through tubing into which wet-bulb thermocouples were placed. Wet-bulb thermocouples (type T, 0.005 cm diameter) with the tip (bead) covered with a moistened wick were tested. Experiments were performed for air velocities ranging from 1.50 to 2.5 m sec?1 (Reynolds number of 2,500 to 4,500) and wet-bulb temperature ranging from 12.5 to 17.4°C. Experimental conditions were selected to simulate human respiratory conditions. Correlation between airflow velocity and wet-bulb thermocouple time constants was not significant at all levels.  相似文献   

8.
We have investigated the performance of a graphite–boron composite (GBC) with 3?wt % boron as a precursor for a boron-doped diamond heater in a Kawai-type apparatus at 15?GPa. We first tested a machinable cylinder of GBC sintered at 1000°C in Ar/H2 gas (99:1 molar ratio). Boron oxide (B2O3) formed during sintering frequently hindered the GBC heater from stable operation at temperatures higher than 1400°C by producing melt throughout the heater together with oxide and/or silicates. We then rinsed the GBC heater in hydrochloric acid to remove B2O3. After rinsing, we succeeded in stably generating temperatures higher than 2000°C. We also improved a molding process of different-sized GBC tubes for convenient use and tested the molded GBC heater. It was free from the B2O3 problem. The electromotive force of the W/Re thermocouple was successfully monitored up to 2400°C.  相似文献   

9.
FePt nanoparticles with an average grain size of 4 nm and equiatomic composition of Fe and Pt was studied under high pressures in a diamond anvil cell to investigate its structural stability and compressibility under high compression. The ambient pressure disordered face-centered-cubic (fcc) phase was found to be stable to the highest pressure of 61 GPa (compression of 15%) at room temperature. The compression of Fe50Pt50 nanoparticles is closer to the compression curve for pure Pt and shows lower compressibility than what would be expected for a bulk Fe50Pt50 alloy. The nanoparticle character of Fe50Pt50 sample is maintained to the highest pressure without any observable grain coarsening effects at ambient temperature. Laser heating of disordered fcc phase at 32 GPa to a temperature of 2000 K resulted in a phase transformation to a microcrystalline phase with the distorted fcc structure.  相似文献   

10.
Mesoporous silica SBA-15 (with ~6?nm pore size and ~6?nm wall thickness) was exposed to a hydrothermal environment at 2 and 5?GPa. The p,T quenched products were investigated by powder X-ray diffraction and transmission electron microscopy. Infrared spectroscopy and thermogravimetric analysis of a sample subjected to 5?GPa at room temperature suggests functionalization of both inner and outer pore surface by silanol. Partial transformation to nano-sized (20–50?nm) coesite crystals with nonfaceted morphology was observed during short equilibration times of 2?h at 125°C, which is significantly below the melting point of water (~250°C). Untransformed SBA-15 maintained intact pore structure. At 175°C and during 8?h, SBA-15 transformed completely into faceted coesite crystals with dimensions 100–300?nm, suggesting Ostwald ripening and thus significant mass transport in the solid water environment. At 2?GPa the melting point of water is near 70°C. Partial transformation to nano-sized α-quartz was observed at 65°C and during 2?h. Untransformed SBA-15 partially pore collapsed. The reduced pore stability of SBA-15 at 2?GPa is attributed to the presence of liquid water in the pores due to melting point depression of confined water.  相似文献   

11.
Grain evolution of nano-crystals ZnO under high temperature and pressure is studied using a cubic high pressure apparatus. The structure, grain sizes and morphology of the samples are characterized by X-ray diffraction and field emission scanning electron microscopy. The results show that the grain sizes of ZnO grow rapidly at temperature 200°C under pressure. At temperature lower than 300°C (including 300°C), the grain sizes of the samples first increase with the pressure increasing from 1 to 3 GPa and later decrease from 4 to 6 GPa. The activation volume from 1 to 3 GPa and from 4 to 6 GPa is calculated respectively using the phenomenological kinetic grain growth equation at temperature 300°C. At temperature higher than 400°C (including 400°C), the grain sizes of the samples increase with the pressure increasing from 1 to 6 GPa. ZnO nano-bulks with good quality can be obtained under the specific conditions.  相似文献   

12.
High pressure and high temperature conditions of 4 GPa and 500°C were generated using a small-sized cubic-type multi-anvil apparatus, which was originally developed for high pressure and low temperature experiments. The drop in pressure was negligible as the temperature was increased from room temperature to 300°C at 4.5 GPa under conditions where the press was clamped. Two-dimensional X-ray diffraction images were successfully obtained from a pure aluminum specimen at 4 GPa and 500°C in the angle-dispersive mode.  相似文献   

13.
Abstract

A special furnace with programmable temperature gradient was contructed. It can be arranged inside an internally heated gas pressure chamber. In this work, the application of the furnace to obtain mercury telluride crystals is presented. Experiments were carried out under gas pressure of argon or nitrogen up to 1,5 GPa in a gas chamber of 30 nun internal diameter; the temperature range used was 25°C–800°C. Since graphite heating elements are used, higher working temperatures are possible. Quasi linear temperature gradient determined by three independent thermocouples can be programmed by the power control systems (i.e. Eurotherm units for the three regulation zones).  相似文献   

14.
Fusion and solidification of Al and Ag samples, as well as Fe93–Al3–C4, Fe56–Co37–Al3–C4, and Fe57.5–Co38–Al1–Pb0.5–C3 alloys (in wt%), have been investigated at 6.3?GPa. Heater power jumps due to heat consumption and release on metal fusion and solidification, respectively, were used to calibrate the thermal electromotive force of the thermocouple against the melting points (mp) for Ag and Al. Thus, obtained corrections are +100°C (for sample periphery) and +65°C (center) within the 1070–1320°C range. For small samples positioned randomly in the low-gradient zone of a high pressure cell, the corrections should be +80°C and +84°C at the temperatures 1070°C and 1320°C, respectively. The temperature contrast recorded in the low-gradient cell zone gives an error about ±17°C. The method has been applied to identify the mp of the systems, which is especially important for temperature-gradient growth of large type IIa synthetic diamonds.  相似文献   

15.
We report a synchrotron energy-dispersive X-ray diffraction study of the novel high explosive 1,1-diamino-2,2-dinitroethylene at high pressures and high temperatures. Pressure was generated using a Paris–Edinburgh cell to employ larger sample volumes. High temperatures were created using a resistive graphite cylinder surrounding the sample. The PT phase diagram was explored in the 3.3 GPa pressure range and in the ~ 400°C temperature range. We believe that the sample commenced in the α-phase and then ended up in an amorphous phase when the temperature increased beyond 280°C near 2 GPa, which we believe to be the γ-phase. Further pressure and temperature cycling suggests that the sample transformed reversibly into and out of the amorphous phase near the phase line.  相似文献   

16.
We present the behavior of the thermoelectric response in a nanoscale tungsten-constantan (Cu 58%, Ni 42%) thermocouple (TC). The TC is tip-section typed and fabricated by the stepping method. The thermal electromotive force (emf) showed nearly linear behavior versus temperature over the range from 0 to 100C. For the thermocouples with contact radius below 300 nm, the Seebeck coefficient decreased with the size of thermocouples turning smaller. According to the theory based on the free-electron model, the size-dependence thermal electric response may be ascribed to the change of electronic property in nanoscale.  相似文献   

17.
V.D. Divya  U. Ramamurty 《哲学杂志》2013,93(17):2190-2206
Diffusion couple experiments are conducted in Co–Ni–Pt system at 1200?°C and in Co–Ni–Fe system at 1150?°C, by coupling binary alloys with the third element. Uphill diffusion is observed for both Co and Ni in Pt rich corner of the Co–Ni–Pt system, whereas in the Co–Ni–Fe system, it is observed for Co. Main and cross interdiffusion coefficients are calculated at the composition of intersection of two independent diffusion profiles. In both the systems, the main interdiffusion coefficients are positive over the whole composition range and the cross interdiffusion coefficients show both positive and negative values at different regions. Hardness measured by performing the nanoindentations on diffusion couples of both the systems shows the higher values at intermediate compositions.  相似文献   

18.
The present work was aimed to understand the role of light elements for the penetration of Fe melt through the olivine matrix at high P–T parameters. We studied the mechanism of Fe melt percolation through the olivine matrix, whose interstices are filled with carbon and sulfur. The experiments were performed using a ‘split-sphere’ type multi-anvil high pressure apparatus at pressures 2.0 and 5.5?GPa and a temperature of 1600°C. It was demonstrated that the Fe melt penetrated through the olivine matrix at a relatively high rates in the presence of carbon or sulfur in the interstices. The percolation occurs due to fast dissolution of the light elements into Fe melt and filling of these interstices by the melt.  相似文献   

19.
Abstract

In order to serve as substitute for the pressure ruby scale at high temperature, the breathing mode of bemsens (990 cm?1) and the first order Raman mode of diamond (1333 cm?1) have been studied as a function of pressure and temperature in the range of 0–15 GPa and 25–400°C. The diamond and bensene Raman frequency shifts are shoft to be of valuable use as a pressure scale at high temperature. A further advantage of bensene is to remain a suitable pressure transmitting medium up to 350°C and 15 GP.  相似文献   

20.
Secondary Ion Mass Spectrometry was used to determine the failure mode of sheathed Nicrosil versus Nisil thermocouples exposed to temperatures above 1000°C. Four thermocouples, two sheathed in Inconel-600 and two sheathed in type 304 stainless steel, were studied. Relative sensitivity factors, indexed by a matrix ion species ratio, were used to quantify SIMS data for the alloys studied. Oxygen pressure 2.7 × 10-4 Pa in the sputtering region gave enhanced sensitivity and superior quantitative results compared to data obtained at instrument residual pressure. At sufficiently high oxygen surface coverage, the slope of the nonlinear sensitivity factor curves for the Nicrosil and Nisil alloys approached zero. Quantified SIMS data showed that these thermocouples decalibrated because significant alterations in the elemental composition of the Nicrosil and Nisil thermoelements occurred. The extent of the observed alteration was different for each thermocouple, for a given time and temperature of exposures, and was influenced by the particular sheath material used in the thermocouple construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号